چکیده

افزایش چشم‌گیر جایگاهی مواد خطرناک نگرانی‌هایی را در مورد صدمات به انسان و بقای این مواد در محیط زیست به آسانی در این مقاله به بررسی می‌پردازد. به طور خاص از جمله مواردی مطرح می‌شود که مصرف کردن این مواد در محیط‌های مختلف انسانی و محیطی ناشی از انتقال مواد خطرناک از این مواد می‌تواند به وقوع فاجعه‌ای منجر شود.

واژه‌های کلیدی: مکانیابی، مواد خطرناک، مدل دو هدفه، مدل دو هدفه، مدل دو هدفه، مدل دو هدفه

1- مقدمه

جایگاهی مواد خطرناک به‌شکلی از مسائل حمل و نقل می‌باشد که با توجه به ماهیت آن از اهمیت خاصی برخوردار است. روستای میلیونان تا هزار – راه‌سازی سراسر دنیا جایگاهی می‌شود که بخشی از این محسوسات را مواد خطرناک تشکیل می‌دهد. به عقیده وزارت حمل و نقل امریکا ۶۰٪ مواد خطرناک به این شکل تعیین می‌شود. هر ماده‌ای که بتواند باعث آسیب‌های جانی، مالی و زیستی محسوس شود، مواد خطرناک با پایان کانسپسیون حمل و نقل جاده‌ای کالا و محسوسات خطرناک به نقطه‌گذاری تکنیک‌بندی شده‌ای [۱] باشد. طبق مورد نظر کانسپسیون فوق

۱- کارشناسی ارشد مهندسی صنایع، دانشگاه علوم و فنون مازندران
farzad.ms@ustmb.ac.ir

۲- استاد رشته مهندسی صنایع پردیس دانشکده های فنی دانشگاه تهران، دانشجوی پاکخیم، پاست کرک: tavanaki@ut.ac.ir

۳- استاد رشته مهندسی صنایع پردیس دانشکده های فنی - جمهوری اسلامی می‌باشد

۴- استادیار رشته مهندسی صنایع دانشگاه علوم و فنون مازندران، پاست

۵- US Department of Transportation

6- European Agreement For Carriage Dangerous Goods and Substance by Road (ADR)
جدول (1): طبقبندی مواد خطرناک براساس کانویسون

<table>
<thead>
<tr>
<th>طبقه‌بندی</th>
<th>زیر طبقه</th>
<th>نوع مواد</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد منفجره</td>
<td>1/0</td>
<td>1</td>
</tr>
<tr>
<td>کارهای قابل اعتصام</td>
<td>2/1</td>
<td>2</td>
</tr>
<tr>
<td>کارهای غیر قابل اعتصام و غیر سمی</td>
<td>2/2</td>
<td>2</td>
</tr>
<tr>
<td>کارهای سمی</td>
<td>2/3</td>
<td>2</td>
</tr>
<tr>
<td>ماده‌ای قابل اعتصام</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>جامدات قابل اعتصام</td>
<td>3/0</td>
<td>4</td>
</tr>
<tr>
<td>جامدات با میانک اشیای زایی</td>
<td>3/1</td>
<td>4</td>
</tr>
<tr>
<td>جامدات کاسی کندنده</td>
<td>5/1</td>
<td>5</td>
</tr>
<tr>
<td>پراکسیدهای آلی</td>
<td>5/2</td>
<td>5</td>
</tr>
<tr>
<td>مواد مسی</td>
<td>6/1</td>
<td>6</td>
</tr>
<tr>
<td>مواد فونزا</td>
<td>6/2</td>
<td>7</td>
</tr>
<tr>
<td>مواد رادیواکتیو</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>مواد خوریده</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>ضایعات و پسماندها</td>
<td>-</td>
<td>9</td>
</tr>
</tbody>
</table>

است که در مثال مسائل یکپارچه‌سازی ترکیبی به‌طور عمده مورد مطالعه قرار گرفته است. مسئله مکان‌بندی-مسیربندی (LRP) شامل تعیین مکان و ضریب تحقیق تسهیلات به‌طور همزمان تعیین مجموعه مسیرهای بهینه مرتب جهت خدمات رسانی به مشتریان می‌باشد. توزیع مواد از تسهیلات به‌صورت یک بار کامپیوتری کمتر از آن باشد. در مورد گام‌های معمول مسیربندی شامل این چهار مسئله NP-hard مسیربندی یک مسئله کنترل نظر مورد نظر آرائه می‌گردد. در بخش سوم مسئله مورد نظر تعیین نکرده و یک مدل رایانه‌ای دو هدف خصوصیه مصوب (MLP) صحتی ندارد. برای آن، برآورد می‌گردد. سپس در بخش چهارم، یک مدل توسط بایان مرحله اتصال از مسئله مکان‌بندی-مسیربندی توسط از مسئله کلاسیک مسیربندی و سایر نقل‌های (VRP) می‌باشد. مسئله مسیربندی و سایر نقل‌های مواد با یک مدل مسیر بهینه گردد و مواد نقل و نقل بر مبنای یک ایستگاه با بیشتر برای خدمت‌دهی به تعداد مشتری‌های می‌باشد. این از مسائل مدل کال نگهداری و محیط زیست و جامعه خطرناک و جزو تسهیلات ناخوشایند است (مثل پالایشگاه). همچنین مقدار جمل مواد خطرناک نیز قرار دارد جوزو تسهیلات ناخوشایند به حساب آید (مثل بمب پنزر). بنا براین تقلیق تصمیمات مربوط به مکان‌بندی چنین و مسیربندی می‌تواند در کاهش ریسک در ناحیه ریسک مواد خطرناک و مواد غير ایمن باشد. از مسئله مکان‌بندی-مسیربندی توسط از مسئله کلاسیک مسیربندی و سایر نقل‌های (VRP) می‌باشد، مسئله مسیربندی و سایر نقل‌های مواد با یک مدل مسیر بهینه گردد و مواد نقل و نقل بر مبنای یک ایستگاه با بیشتر برای خدمت‌دهی به تعداد مشتری‌های می‌باشد. این از مسائل مداخله مسئله مکان‌بندی چنین و مسیربندی می‌تواند در

3- Location-Routing Problem
4- Mixed-Integer Linear Programming (MILP)

1- Undesirable Facility
2- Vehicle Routing Problem
2- ادیب‌های موضعی

پیکرهٔ همکاران در تحقیق ریسک حمل و نقل مواد خطرناک را برای هر دو نوع حمل جاده‌ای و ریلی و برای دو مسیر یکسان با فرض اندازه‌بندی کی در مسیر کامل به صورت روابطی و دگرگون کردن از نتایج آن، بررسی کردند. نتایج بررسی نشان داد در حمایت همه انواع مواد خطرناک استفاده از توتل تاثیر خاصی بر ریسک ندارد ولی در حمل جاده‌ای، برای بهتر مواد افزایش ریسک می‌شود. این تحقیق نشان داد برای انواع مختلف مواد، با یکی از شیوه‌های بهبودی و بهبود مواد خطرناک را با فرض حمایت و سوال نقلیه از مراکز جمعیتی درون شهرها مدل‌زی نمودند. از نظر از سوال نقلیه با دو بخش تقسیم شدند. از جمله که یک روش مسائل برای کاهش ریسک حمل و نقل مواد خطرناکی در طی دوره‌ها علاوه بر دیگر مواد اثری ندارند. 8- Nagy 9- Salhi 10- Shobrys 11- Zografos 12- Samara

1- Bubbico 2- Erkut 3- Dadkar 4- K-Shortest Path Algorithm 5- Pradhananga 6- Taniguchi 7- Yamada

سال پانزدهم-شماره ۴۲- رزمند ۱۳۹۲
1- هزینه انتقال در هر مسیر

2- هزینه تأسیس یک ابزار توزیع جدید.

در این مقاله، در نوع ریسک در نظر گرفته شده که بررسی کرده‌اند. یک ریسک جمعیتی ۲- ریسک تصادف ۲- ریسک ریت است. برای مثال فق که مدل یک حرفخاکی مختلط اصلاح می‌شود، ریسک جمعیتی به‌طور کلی به‌طور کلی هزینه حمل و نقل و پیش‌بینی ریسک در نظر گرفته می‌باشد. این مقاله جهت انجام تعداد کمی از سارووهای مختلف به‌طور همزمان یک ریسک، کل هزینه حمل و نقل و پیش‌بینی ریسک در نظر گرفته می‌باشد.

در تحقیقات پیشین مسیربندی و مکان‌بندی به‌طور خطرناک و گردش‌های مختلف و تکنولوژی‌های پیشرفته‌تر، قابل اطمینان این مدل نمی‌باشد. در این مقاله فرض بر این است که کسب نتایج ناشی از تصادف و سیاست تقیی در یک راهبرد با مجدد فاصله‌ای اقلیدسی مابین نقطه و سیستم تقیی رابطه عکس و باز خلال مسیر نسبت می‌سازد.

1- List
2- Mirchandani

3- Mix Integer Linear Programming (MILP)
ارتباطی موجب باشد. محدودیت (۵) محدودیت طریقتی می‌باشد و بایانگر این است که مجموع ارزش مواد سوختی از هر ایران توزیع نباشد. محدودیت (۶) بایانگر نوع متغیرهای است که از صفر و یک می‌باشد.

4- نتایج محاسباتی
مثال ۱: یک شبکه که شامل ۵ گره و ۵ کمان می‌باشد که در شکل (۱) نمایش داده شده است. دو گره از گره‌های شبکه نقاط پیشنهادی جهت تأسیس ایران توزیع که طرفت و هزینه تأسیس آنها را در جدول (۲) نمایش داده است. همچنین نقاط مراصدی به شکل ذکر شده است. اطلاعات مربوط به هر کمان شامل طول کمان و میزان هر یک از ریسک‌ها را در جدول (۴) نمایش داده می‌شود.

جدول (۲): اطلاعات مربوط به نقاط پیشنهادی

<table>
<thead>
<tr>
<th>نقطه</th>
<th>هزینه تأسیس</th>
<th>طرفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۱۰۰</td>
<td>۸۰</td>
<td>۱</td>
</tr>
<tr>
<td>۸۰۰۰</td>
<td>۷۰</td>
<td>۳</td>
</tr>
</tbody>
</table>

جدول (۳): اطلاعات مربوط به نقاط تفاضل

<table>
<thead>
<tr>
<th>نقطه</th>
<th>نقطه تفاضل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۰۰</td>
<td>۳۰۰۰</td>
</tr>
<tr>
<td>۴۰۰۰</td>
<td>۴۰۰۰</td>
</tr>
</tbody>
</table>

همان طور که گفتیم شش مدل دارای دو هدف است. در این مقاله، با استفاده از تکیه خطی توسعه هدف انرگی به کمک تبدیل می‌شوند. برای تکیه اهداف می‌باشد آنها هم فاز باشند. بنابراین اهداف توسط روش توسعه گردیدن هم فاز می‌شوند. به این ترتیب متغیرها در تابع هدف بر پیشترین مقدار آن تقسیم می‌شوند.

جدول (۴): اطلاعات مربوط به کمان‌ها

<table>
<thead>
<tr>
<th>کمان</th>
<th>طول</th>
<th>ریسک</th>
<th>زیرست محیطی</th>
<th>کمینه</th>
<th>سطحداف</th>
<th>می‌باشد</th>
<th>محدودیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰-۱</td>
<td>۱۵</td>
<td>۲-۱</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>می‌باشد</td>
<td>محدودیت</td>
</tr>
<tr>
<td>۰-۲</td>
<td>۵۰</td>
<td>۰-۲</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>می‌باشد</td>
<td>محدودیت</td>
</tr>
<tr>
<td>۰-۳</td>
<td>۲۰</td>
<td>۰-۲</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>می‌باشد</td>
<td>محدودیت</td>
</tr>
<tr>
<td>۱-۴</td>
<td>۱۵</td>
<td>۰-۱</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>می‌باشد</td>
<td>محدودیت</td>
</tr>
<tr>
<td>۰-۵</td>
<td>۰۵</td>
<td>۰-۳</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>می‌باشد</td>
<td>محدودیت</td>
</tr>
</tbody>
</table>

۳- مدل ریاضی

۴- توابع هدف و محدودیت‌ها

$\begin{align*}
\text{Min } Z_1 &= \sum_{i \in I} \sum_{j \in V} X_{ij} C_{ij} + \sum_{i \in I} Y_i E_{Ci} \\
\text{Min } Z_2 &= \sum_{i \in I} \sum_{j \in V} X_{ij} (A_{ij} (P_{Rij} + E_{Rij})) \\
\text{s.t. } \sum_{j \in V} X_{ij} - \sum_{j \in V} X_{ji} &= 0 \quad \forall i \in V \\
\sum_{i \in I} F_{ij} &= 1 \quad \forall j \in J \\
\sum_{i \in I} X_{ij} + \sum_{i \in I} X_{ji} &= 1 + F_{ij} \quad \forall j \in J, i \in I \\
\sum_{j \in V} F_{ij} D_{ij} &\leq C_i Y_i \quad \forall i \in I \\
F_{ij}, X_{ij}, Y_i &\in [0, 1]
\end{align*}$

معادله (۱) بایان مجموع هزینه جابجایی مواد خطرناک در شبکه و تأسیس ایران توزیع پیشنهادی می‌باشد و معادله (۲) بایان مجموع ریسک در شبکه می‌باشد. محدودیت (۳) پیوسته‌گری هر یک از مسیرهای را ضمانت می‌کند. اگر از i از i از مسیری موجود باشد از آن i هم طرح مشابهی سیستم موجود است. مراحل رفت و برگشت قبل استفاده می‌باشد. محدودیت (۴) بایانگر این می‌باشد که هر یک از نقاط تفاضل می‌باشد کل نیازمندی از یک ایران توزیع آمیزه می‌باشد. محدودیت (۵) بایانگر این می‌باشد که مواد سوختی در صورتی می‌توانند از ایران توزیع i به نقطه تفاضل i انتقال پیدا کند که بين این مسیری
جدول (۶): اطلاعات مربوط به نقاط پیشنهادی

جدول (۷): اطلاعات مربوط به نقاط تقاضا

متن در زبان اصلی:

در مثال ۳: یک شبکه که شامل ۱۰ گره و ۱۲ کمان می‌باشد که در شکل (۱) نمایش داده شده است. سه گره از گره‌های شبکه نقاط پیشنهادی جهت تاسیس ابزار توزیع می‌باشد که به وسیله نسبت و هزینه تاسیس آنها را در جدول (۶) نمایش داده شده است. همچنین نقاط ۴ تا ۸ نقاط تقاضا می‌باشد که نقاط تقاضای آنها را در جدول (۷) نمایش داده شده است. اطلاعات مربوط به هر کمان شامل طول کمان و میزان هر یک از ریسک‌ها را در جدول (۸) نمایش داده می‌شود.

$\text{Min } Z = Z_2^\lambda \times Z_1^{1-\lambda}$

در این نامی(JNOT) می‌باشد که تابع به شکل (۱) نمایش داده شده است. سه گره از گره‌های شبکه نقاط پیشنهادی جهت تاسیس ابزار توزیع می‌باشد که به وسیله نسبت و هزینه تاسیس آنها را در جدول (۶) نمایش داده شده است. همچنین نقاط ۴ تا ۸ نقاط تقاضا می‌باشد که نقاط تقاضای آنها را در جدول (۷) نمایش داده شده است. اطلاعات مربوط به هر کمان شامل طول کمان و میزان هر یک از ریسک‌ها را در جدول (۸) نمایش داده می‌شود.
5- نتیجه‌گیری
روزنان میلیون‌ها تن کالا در راه‌های کشورهای مختلف جهان در حال جابجایی انتقال و داشت و به وسیله از این گونه محموله‌ای خطرناک تشکیل می‌دهند. در مورع که از ادیب‌های مربوط به حمل و نقل مواد خطرناک ارائه گردید، می‌توان منجر شد که مسئله مرافعه‌گزاری - مکانیابی کم در نظر گرفته شده است. هدف این مقاله، تعیین تعداد و مكان جهت تأسیس این توزیع پیشنهادی و همچنین باتن اینکه چه قشد در نقاط مختلف توسط کدام ابزار تأمین شود از جه مسئولیت یاد. در این مقاله، معنوی ریسک هم از ریسک تصادف‌ها، ریسک جمعیتی و ریسک جمعیتی در نظر گرفته شد. نسبت یک مدل ریاضی دو هدف خیلی مختلف عملیاتی برای مسئله مورد نظر توصیه داده شد. از آن‌ها استفاده BINGO برای حل مسئله مورد نظر استفاده می‌شود و نتایج حاصل ارائه گردید به‌طوری که ترکیب خیلی منبعی ریسک و هزینه‌های مربوط به این سیستم برای این دو سیستم تعیین شد با توجه به اینکه در این مقاله یک نوع ماده خطرناک تحت عنوان مواد سوختی در نظر گرفته شده است، برخی از پیشنهاداتی برای توزیع آن به هرح珠宝 زیب ارائه می‌گردند.

چند نوع ماده خطرناک را بطور همزمان و تاثیرشان روی پارامترهای مختلف می‌توان در نظر گرفت. همچنین اهداف دیگر (مانند کمپرسیون جاده‌های ریسک سیری) و برخی از پارامترهای بیشتر عیان هرکدام داده در جدول تأمین می‌شوند.

جدول (9): نتایج حاصل از حلق ۲

<table>
<thead>
<tr>
<th>ریسک کل</th>
<th>هزینه کل</th>
<th>ترکیب خیلی بهینه</th>
<th>مسیر بهینه</th>
<th>گره مبدأ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۷۷۸</td>
<td>۲۵۲۵۵</td>
<td>۲۳۲۱ ۶-۱-۱</td>
<td>۴۵-۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲-۷-۲</td>
<td>۱۰-۱</td>
<td>۳-۵-۳</td>
<td>۸-۵</td>
<td>۸</td>
</tr>
<tr>
<td>۸-۵-۳</td>
<td>۳۵۰۲</td>
<td>۸-۵-۳</td>
<td>۸-۵</td>
<td>۸</td>
</tr>
<tr>
<td>۳۵-۳</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
</tr>
<tr>
<td>۳۵-۳</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
<td>۳۵۰۲</td>
</tr>
</tbody>
</table>

