

كشف مينهاى جنگى بـه روش دما نگارى فروسرخ غيرفعال

ابوالفضل اكبرنيا كلاكَر ’، محمدرضا محزون 「، محمدرضا هدايتىراد「

چچیید

مين محسوب مىشود.

 آبپخشان مبتنى بر نشانگر و تبديل كارهونن- لئو (KL) استفاده شده است.
كليدواءْهها: كشف مين، دمانتارى فروسرخ غيرفعال، شيوههاى پردازش تصوير، يدافند غيرعامل
 مراحل اوليه مى باشند، اما پيـشرفت عمـا

 تفاضل محدود است [ه].

 پایی" و همكارانش نيز شيوههاى هاى مختلف كشف مين را را با تأكيد

 اين قالب كارى با استفاده از تصاوير فروسرخ از از ميدان مين نشان دير دي ديان داده

و ارائه پيشنههاد پرداخته مى شود.

r- روشهاى رايج مينيابى

 مينيابى است كه على

 اغتشاش ميدان الكترومغناطيسى ناشى از وجود يك جسم فلزى ريـى را را در

2- Principal Component Analysis
3- Batman
4- Paik
5- Lee
6- Ajlouni

1- مقدمه

همواره تهديـدات ناشـى از تـسليحات نظـامى بــهكاركرفـتــه شــده در

 تسليحات، مينهاى كاشته شده در طول جنـگ است. اس از آنجا كه خطر

 كه سالانه بيش از
 می گی

 ازاى هر . .

 آغاز شده است. يكى از اين روشهـاى

 مين با دمانگًارى فروسرخ صور مدل هاى رياضى براى خاك و مين منجر شده اسـت. عليـرغم اينكـهـ

1- Watson

فروسرخ حرارتى مى گويند. همه اجسام با دماى بالاتر از صفر مطلــق،

 فروسرخ از اشيايى كه در دماهاى معمولى مثل دماى اتـيا اتاق قرار دارنــــ،

r-r-r- مبناى نظرى استفاده از دمانگًارى فروسرخ براى كــشف

مين

 تفاوت حرارتى ايجادشده بين خاكى بالاى مين و خاك ساير قـا
 حجمى مى كويند. اين اثر، بسيار متأثر از عمقى است كه مـي مـين در در آن آن

 كاهش مىيابد. علاوه بر اثر حجمى، اثر ديگرى نيز وجود دارد كه دائمى نيست و وتنها

 حجمى و سطحى نشان داده شده است.

كوچکى مهمات در ميادين جنگّى، هشدارهاى غلط زيادى توليد مـىنمايد[^، • ا].

 بررسى قرار مى گيرد.

「 r-ا- - معرفى طيف فروسرخ

 كوتـاه (SWIR) از آ ا/ تــا از از از از Y فروسرخ بازتابيــه شـده و بــه بانـدهاى MWIR و LWIR

1- Ground Penetrating Radar
2- Passive Millimeter Wave

بر شيوههاى پردازش تصويرى براى كشف مينهاى مــدفون در خـا كـا

 ادامه بهصورت جداگانه مورد برر سى تفصيلى قرار خواهد گَرفت.

- ا- استخراج تصاوير مشخصه از يك مجموعه تصاوير اولــين مرحلـه از ايـن قالـب كــارى، اسـتخراج تـصاوير مشخـصه از مجموعـهتـتصاوير فروسـرخ مربـوط بــه يــك صــحنه مـى باشــد. ايـن مجموعهتصاوير تنمها در دماى صحنه تصويربردارى بـا يكـديگر تفــاوت دارند. تصاوير مشخصه استخراجشده مىبايست اغلـب مشخـصههـايى كه در هر كدام از تصاوير مجموعه بهصورت جداگانـه وجـود دارنـــد شامل شوند، بهطورى كه اگر به علت تغيير حرارت منظره در تـصاوير مختلف، هدفى در برخى از تصاوير مجموعه ظــاهر شـده و در برخـى ديگًر ظاهر نشده باشد، در تصوير مشخصه بتوان اين هـدف را يافـت. KL Kـررسى مقالات نشان مىدهد كه در بيـشتر آنهـا از روش تبـديل براى نيل به هدف مذكور استفاده شـده اسـت. تبـديل KL عمليــاتى
 تبديل، در اسـتخراج مشخـصه و فـشردهســازى مـورد اسـتـفاده قـرار مى گیرد[9]. در اينجا هدف از استفاده اين تبديل، استخراج مشخـصه از يك رشته تصوير مىباشد. با كمــى تبـديل KL مـىتـوان تـصاوير تصادفى ورودى را توسط يك مجموعه كاهش يافته از تصاوير پايـه بــا حداقل خطا نمايش داد. از آنجا كــه تـصوير ورودى تبـديل KL يـــ فرا يند تصادفى دو بعدى فرض مىشــود، ايـن تبـديل بـراى پـردازش رشتهتصاويرى كه از يكى منظره در زمانهاى متفاوت گرفته شدهانــد، مناسبتر است. براى محاسبه تبديل KL يك مجموعهتصوير، ابتدا بايد ميـانگين هـر تصوير را از تمام مقادير شدت پيكسلهاى همان تصوير كــم نمــود. از اينرو تصوير حاصله تبديل به تصويرى بــا ميـانگين صـفر مـى گـردد. سپس بردار ديكسل، dm تشكيل داده مـىشـود. همـانطـور كــه در شكل (Y) نشان داده شده است، منظور از بردار ديكسل، بردارى است

(الف)

(ب)

شكل ا- الف: اثر حجمى، ب: اثر سطحى]V]

براى مدل كردن رفتار حرارتى خاكى كه مين در آن دفن شده اسـت،

 عمق آن ارائه شده است. در اين مدل دماري دماى خاكى، T(x,t) بدوسـيله

جواب معادله ديفرانسيل جزيى سهموى
$\frac{\partial T}{\partial t}=\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(\alpha(x) \frac{\partial T}{\partial x_{i}}\right)$

با در نظر گرفتن يكى سرى شرايط مرزى و مقــادير اوليـه تقريـب زده
 مين مدفون در آن است[1F]].

F- F كشف مين با استفاده از روش دمانگارى فروسرخ

 شدت در معرض تنزل هستند از جما

 يردازش تصوير ارتقاء داده شود. در اين قسمت يك قالب كارى مبتنى

2- Resolution

توسـط تبــديل KL در قـسمت (ز)، مـشاهده مسـى گـردد كــه همــه
 حالتهاى متفاوتى قرار گرفته اسـت، در اولـين تـصوير تبــديليافتـه كاملاً پديدار مىشود. در قسمت (ح)، دومين تصوير تبديل يافته بـراى
 مشاهده مى گردد، كه مشخصههـاى (شـاخكـهـاى) موجـود در همــه

 يافته توسط تبديل KL، به شكل ضعيفترى ظاهر مىشوند.

از آنجا كه كنتراست بين پسزمينـه و هدف معمـولا بــا بـه انـدازه كــافى نيست، از اينرو تصاوير به ندرت داراى اطلاعات كافى براى تـشخيص
 هدف و پسزمينه است تا با اينكار بتوان بين آنها بدراحتى تمايز قائل

$\mathrm{s}_{\mathrm{k}}=\left(\mathrm{r}_{\mathrm{k}}-\min (\mathrm{I})\right) \frac{\mathrm{L}-1}{\max (\mathrm{I})-\min (\mathrm{I})}$
براى تغيير مقدار شدت هر پيكـسل اسـتفاده مــىنمايــد كــه در ايـن رابطه، S مقدار شدت پ ورودى، min وmax بيانگر كمينه و بيـشينه مقـدار شــد ورودى، L تعداد سطوح شدت و I مقادير شدت تـصوير ورودى اسـت [9 [g]
احتمال k امين سطح خاكسترى در تصوير f (يا اصطلاحاً همـان fic را مىتوان بهصورت
$\mathrm{p}_{\mathrm{f}}\left(\mathrm{f}_{\mathrm{k}}\right)=\frac{\mathrm{n}_{\mathrm{k}}}{\mathrm{m}}$

بيان نمود كه nk ،k=0,1,2, .., L-1 1 بيـانگر تعـداد پيكـسل هـاى m تعداد كل سطوح ممكـن شـدت و L ، f f_{k}, داراى سطح خاكسترى تع $\mathrm{p}_{\mathrm{f}}\left(\mathrm{f}_{\mathrm{k}}\right)$ تــداد كــل پيكــسلهــاى تــصوير مــىباشــد. نمــودار برحسب بهدست آوردن تصويرى با هيستوگرامى تقريبا يكنواخت است كـــه بـا رابطه:
$\mathrm{g}_{\mathrm{k}}=\mathrm{T}\left(\mathrm{f}_{\mathrm{k}}\right)=(\mathrm{L}-1) \sum_{\mathrm{j}=0}^{\mathrm{k}} \frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{m}}=(\mathrm{L}-1) \sum_{\mathrm{j}=0}^{\mathrm{k}} \mathrm{p}_{\mathrm{f}}\left(\mathrm{f}_{\mathrm{j}}\right)$
1- Histogram Equalization

كه مقادير شدت تمام پيكسلهاى مجموعه تصوير كه در يكى موقعيت قـرار دارنــد را نـشان مــىدهــد. تعـداد ايـن بردارهــا برابـر بـــا تعـداد پییسلهاى هر تصوير مىباشد. پـس از محاســبه بردارهـاى ديكـسل،
 ماتريس كواريانس از طريق رابطه:
$\mathrm{C}=\mathrm{E}\left[\mathrm{d}_{\mathrm{m}} \mathrm{d}_{\mathrm{m}}^{\mathrm{T}}\right]=\frac{1}{\mathrm{M}} \sum_{\mathrm{m}=1}^{\mathrm{M}}\left[\mathrm{d}_{\mathrm{m}}^{\mathrm{T}} \mathrm{d}_{\mathrm{m}}\right]$
بهدست مى آيد. در مرحلـه بعــد، مقـادير و بردارهـاى ويـرزه مـاتريس كواريانس محاسبه مى گردد. پس از اســتخراج مقــادير ويـرّه مــاتريس كواريانس با ضرب داخلى هر كدام از ديكسل هــا بـا بـردار متـنــاظر بـــا

 مقادير شدت، تمام پيكسلهايى كه در يـــ تـصوير قـرار مــى گـيرنــد، اولين تصوير تبديليافته توسط تبديل KL بهدست مىا آيد. بـه همــين

شكل r- يكـ رشته تصوير با N تصوير M پيكسلى[V]
شكل (٪) يكى مجموعهتصوير شش فريمى و اولــين و دومـين تــصوير تبديل يافته اين مجموعه توسط تبـديل KL را نــشان مـىدهــد. ايـن
 چرخش مىباشند. با مقايسه اين شش فريم كه در قسمتهای مای (الـف)

شكل ץ- يكى مجموعه تصوير شش فريمى و اولين و دومين تصاوير تبديليافته اين مجموعه توسط تبديل KL: (الف) تا (و) شش فريه،
(ز) اولين تصوير تبديليافته توسط تبديل KL، (ح) دومين تصوير تبديليافته توسط تبديل KL

مىدهد. براى نرم كردن تصوير نيز مىتوان از فيلتر ترتيبى
 عملگرهايى بازكننده و بسته كنـنده
 زير بيان مىگردد:

$$
\begin{equation*}
\operatorname{ASF}_{\mathrm{n}}(\mathrm{f})=\phi_{\mathrm{n}}\left(\gamma_{\mathrm{n}} \ldots \ldots .\left(\phi_{2}\left(\gamma_{2}\left(\phi_{1}\left(\gamma_{1}(\mathrm{f})\right)\right)\right)\right)\right) \tag{६}
\end{equation*}
$$

كه f تصوير اصلى، n تعداد تكرار عملگً هاى باز يا بــيستهكنـنـده،中

 نرمشده به خوبى مشاهده میى گردد.

 بزر گَترين عنصر شكلدهنده كوچكتر بودهاند، پس از اعمـال فيلتـر از
 شكلدهنده نيز در تصوير فيلترشده، خود را نشان مىدهد.

به ازاى k=0,1,2,...,L-1

 بر روى يك تصوير نمونه نشان داده شده است.

 مشخص نبود در تصوير با هيستوكرام تعديلش شده آ آشكار شده است است از
 آرامى تغيير كند، روش كشش
 روش تعديل هيـستوگرام اسـتفاده نمـود و سـيـگَنال ضــيف مـين را را تقويت نمود.

- - - -

 كاهش نويز و نرم كردن تصوير است كه از بخشبيندى مازاريّ جلوگيرى مىكند و در نتيجه، تعداد هشدار غلط را كاهش

شكل \&- اعمال روشهاى ارتقاء كنتراست به يك تصوير نمونه: (الف) تصوير اصلى، (ب) تصوير با كنتراست بهبوديافته توسط كشش خطى، (ج) تصوير با كنتراست بهبوديافته توسط تعديل هيستوكَرام

1- Over Segmentation	2- Alternating Sequential Filter(ASF)	3- Morphological
4- Opening and Closing Operators	5- Structural Element	

بسيارى از مفاهيم سه رويكرد ديگر را دربر میگيرد و عـلاوهبـر ايـن،

 دمايیى پايينتر از خاكى اطــراف خـود پيــدا مـى كنـنــد لــذا در تـصاوير

 در اين بخشبندى نواحى تيرهتر كه در حكم آبكَيرهاى

 فروسرخ تيره تر از پسزمينه شده و در نتيجـا

2- Topographical

3- Dam
4- Catchment Basin
5- Marker

شكل ه- اعمال فيلتر ASF بر روى تصوير نمونه ا: الف) تصوير اصلى،
ب) تصوير نرمشده توسط ASF

(الف)

(ب)
شكل צ- اعمال فيلتر ASF بر روى تصوير نمونه ז: الف) تصوير اصلى، ب) تصوير نرمشده توسط ASF

- F- F

[^0]
- - - F

تشخيص هدف از روى تنهها اولين تصوير تبـديليافتـه توسـط تبـديل كار دشوراى است؛ زيرا اين تصوير معمولا اطلاعات كـافى بـه مـا نمىدهد. بنابراين معمولاً از دومين يا سومين تصوير تبديل يايـافتــه نيــر براى تشخيص هدف استفاده مىشود. روش كار به اين شكل است كه پس از بخشبندى ايـن تـصاوير مشخـصه، از بــين اهــداف احتمـالى، اهدفى بهعنوان مين اعلام مى گردند كه در يكـ جاى تقريبــاً ثابــت در ار تمام تصاوير مشخصه وجود داشته باشد. در اين روش، محل يا انـدازه دقيق اين اهداف احتمالى در تصاوير مشخصه مهـمـ نيـست؛ زيـرا بــه

 تصوير ظاهر شود، هشدار غلط فرض مـى گــردد. شـكل (^)، مثــالى از
 تصوير مشخصه، دو هدف احتمالى و در دومين تصوير مشخـصه، سـه
 هر دو تصوير مشخصه، در يك مكان تقريباً ثابت ظاهر شده است، آن
 تصوير مشخصه استفاده مى گردد، از احتمالات آمارى آزمايشات قبلى ديلى، براى تصميهمگيرى استفاده مىشود.

شكل ^- تشخيص اهداف: الف) اهداف احتمالى اولين تصوير مشخصه، ب) اهداف احتمالى دومين تصوير مشخصه، ج) هدف نهايى

شكلهاى (9 و • ا) پیادهسازى مراحل مختلف قالب كارى معرفىشده در اين مقاله را بر روى تصاوير فروسرخى كه از يك ميدان مين واقعى
 مى شود با اعمال تبديل KL به مجموعهاى از تصاوير فروسرخ، اولين و دومين تصوير تبديليافته استخراج شدند؛ سپس براى نرم كـردن هـر

 بخشبندى در هر كدام از دو تصوير مشخـصه، سـه هــدف بـهعنــوان

 بهعنوان اهداف نهايىى اعلام مـى گردنــد و ضـمن اينكـــه هــيـج هـشـدار غلطى نيز بهوجود نمى آيد.

پسزمينه تصوير قرار دارند كه از روى نـشانگرهاى داخلـى بـهدسـت

 اعمال بخشبندى آبپخشان مبتنى بر نشانگگر را بر روى يــى تـصوير

نمونه نشان مىدهد.

(ب)

شكل V - نتيجه اعمال بخشبندى آب پֶخشان مبتنى بر نشانگر بر روى تصوير نمونه: الف) تصوير اصلى، ب) تصوير بخشبنى بيندى شده

$$
\begin{aligned}
& \text { به تهيه تصاوير فروسرخ كرده و پس از پيادهسازی شيوههاى پـردازش }
\end{aligned}
$$

معتبر قابل استناد براى اقدامات عملياتى بعدى ارائه دهند．

مراجع

1．UN Landmine Database in the UN Mine Action Service；http：／／www．un．org
2．U．S．Department of State，1998，Hidden killers （1998）：The global landmine crisis，Bureau of Political－Military Affairs，Office of Humanitarian Demining Programs．
3．K．Watson，＂Geological application of thermal infrared images，＂Proc．IEEE，vol．63，pp．128－ 137，Jan．（1975）．
4．A．W．England，＂Radio brightness of diurnally heated，freezing soil，＂IEEE Trans．Geo－sci． Remote Sensing，vol．28，pp．464－476，July （1990）．
5．P．Pregowski，W．Swiderski，R．T．Walczack， and K．Lamorski，＂Buried mine and soil temperature prediction by numerical model，＂ Proc．SPIE，vol．4038，pp．1392－1403，（2000）．
6．S．Batman，J．Goutsias，＂Iterative morpho－ logical algorithms for automated detection of landmines，＂Proc．SPIE，vol．4038，pp．918－ 928，（2000）．
7．J．K．Paik，C．P．Lee，and M．A．Abidi，＂Image processing based mine detection techniques using multiple sensors：A review，＂Subsurface Sensing Technologies and Applications，An International Journal，vo．3，no．3，pp．153－202， July（2002）．
8．C．Lee，＂Mine detection techniques using multiple sensors，＂M．S．thesis，University of Tennessee at Knoxville，（2001）．
9．A．Ajlouni and A．Sheta，＂Landmine Detection With IR Sensors Using Karhunen－Loeve Transformation And Watershed Segmenta－ tion，＂5th International Multi－Conference on Systems，Signals and Devices，（2008）．

10．C．Bruschini and B．Gros，＂A Survey of Current Sensor Technology Research for the Detection of Landmines，＂in Proceedings the International Workshop on Sustainable Humanitarian Demining，vol．6，pp．18－27， Sep．（1997）．
11．D．Daniels，＂Surface penetrating radar，＂IEEE Radar，Sonar，Navigation and Avionics Series 6 London：Institute of Electrical Engineers， （1996）．


```
با توجه به هدف كليدى پدافند غيرعامل كه كاهش اهی تلفات و خـسارات
```



```
مى_)
```



```
مى`ى_
```



```
ديدکّاه „دافند غيرعام
```



```
نياز به تماس مستقيم، به وجود مينهای \
```



```
فروسرخ بيان شدهاند و همحֶنين يک قا⿻⿻一㇂㇒丶见)
```



```
شده
```



```
واحدهاى نظامى غيرمتخص⿻⿻一㇂㇒丶见)
```



```
دوربينهاى فروسرخى كه در اختيار نيروهاى مسلح قـرار دارد، اقــدام
```

12. R. Hudson, "Infrared System Engineering," John Wiley \& Sons, (1969).
13. G. Gaussorgues, "Infrared Thermography," Chapman-Hall, 3rd edition, (1989).
14. N. T. Thanh, N. T. Dinh and H. Sahli, "Thermal infrared technique for landmine detection: Mathematical formulation and methods", Acta Mathematica Vietnamica, vol. 36, No. 2, pp. 469-504, (2011).
15. R. Gonzalez and R. Woods, "Digital Image Processing," Prentice Hall, 3rd edition, (2008).
16. S. Theodoridis , K. Koutroumbas, "Pattern Recognition," Academic Press, (1998).
17. P.Soille, "Morpllological Image Analysis: Principles and Applications," Springer-Verlag, 2nd edition, (2003).
18. G. Ederra, "Mathematical morphology techniques applied to anti-personnel mine detection", MS Thesis, Department of Electronics and Information Processing, Vrije Universitei, Brussel, (1999).
19. Mahmoud A. and Farouk H., "An efficient detection and classification method for landmine types based on IR images using Neural Network", Internationl Journal of Geology, Issue 4, Volume 4, pp. 91-95, (2010).
20. Padmavathi G., Subashini P. and Krishnaveni M., "A generic framework for landmine detection using statistical classifier based on IR images", International Journal on Computer Science and Engineering (IJCSE), Vol. 3, No. 1, pp. 254-261, Jan (2011).
21. Lundberg M., "Infrared land mine detection by parametric modeling", proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, May 7-11, (2001).
22. JRC, Joint Research Centre (JRC), current URL is http://ec.europa.eu/dgs/jrc
23. Unexploded Ordnance Center, mine detection research organization sponsored by the Department of Defense, USA, current URL is: http://www.defense.gov

Landmine Detection by Passive Infrared Thermography Using Image Processing Techniques

A. Akbar Nia Kalagar ${ }^{1}$
M. R. Mahzoon ${ }^{2}$
M. R. Hedayati Rad ${ }^{3}$

Abstract

Landmine are considered as those military weapons that when used during a war, their mission is not accomplished after the war and will always be a threatening element. Thus detection and neutralization of landmine before it causes an insident is one of the most evident examples of passive defense. On the other hand, since common methods of landmine detection face many risks, therefore selection of a method that has the lowest risk, is one of the main considerations of passive defense. Passive Infrared thermography technique which can detect buried landmines without direct contact with the soil, is one of the new and safe methods of landmine detection. In the present paper, to detect landmines, we presented a method which contains different stages of contrast stretching, image smoothing, noise reduction, image segmentation, extraction of feature image from a sequence of images and object identification. In this regard some of the image processing techniques such as linear stretching, histogram equalization, morphological filters, watershed segmentation method based on markers and Karhunen-Leove transformation have been used.

Key Words: Landmines Detection, Passive Infrared Thermography, Image Processing Techniques, Passive Defense

[^1]
[^0]: 1- Watershed

[^1]: 1- M.S Candidate of Imam Hussein Comprehensive University, Writer-in-charge (abolfazlalamdara@gmail.com) - Writer in Charge
 2- Assistant Professor and Academic Member of Imam Hussein Comprehensive University
 3- M.S in Electronics, Imam Hussein Comprehensive University

