تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,952 |
تعداد دریافت فایل اصل مقاله | 4,706,589 |
وارونگی پایدار برای کنترل پیشخور رباتهای انعطافپذیر همکار | ||
مکانیک هوافضا | ||
مقاله 9، دوره 19، شماره 1 - شماره پیاپی 71، خرداد 1402، صفحه 123-135 اصل مقاله (1.91 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
هادی دارابی1؛ محمدرضا الهامی* 2 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
2نویسنده مسئول: دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
تاریخ دریافت: 02 آبان 1401، تاریخ بازنگری: 13 آبان 1401، تاریخ پذیرش: 17 آذر 1401 | ||
چکیده | ||
در این مقاله، حل دینامیک معکوس برای کنترل پیشخور رباتهای انعطافپذیر همکار بررسی میشود. دینامیک داخلی رباتهای انعطافپذیر ناپایدار است و برای به دست آوردن یک حل کراندار مسئله دینامیک معکوس از روش بهینهسازی غیرخطی مقید استفادهشده است. در روش بهینهسازی، هدف کمینه کردن انرژی الاستیک بازوها باوجود قیدهای متعدد است این قیدها شامل: 1) معادلات دینامیکی؛ 2) معادلات مسیر حرکت و نیرو؛ 3) قیدهای سینماتیکی محدودکننده حرکت رباتها؛ 4) قیدهای مربوط به متغیرهای اضافی و 5) قیدهای روش α تعمیمیافته برای پایداری حل است. روش مورداستفاده برای مدلسازی دینامیکی بر اساس معادله لاگرانژ و گسستهسازی به روش اجزای محدود است. از ضرایب لاگرانژ برای کنترل نیروهای داخلی اعمالی به باربری مفید استفادهشده است و برای جلوگیری از تغییر جهت در کنترل نیرو یک قید نامساوی به مجموعه قیدهای بهینهسازی اضافهشده است. این روش روی رباتهای تک لینکی انعطافپذیر همکار، پیادهسازی شده است و توانایی کنترل مسیر بار و نیروی اعمالی به آن را دارد. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
ربات انعطافپذیر؛ اجزای محدود؛ روش لاگرانژ؛ وارونگی پایدار؛ روش &alpha؛ تعمیمیافته | ||
عنوان مقاله [English] | ||
Stable Inversion for Feedforward Control of Flexible Cooperative Manipulators | ||
نویسندگان [English] | ||
Hadi Darabi1؛ Mohammad Reza Elhami2 | ||
1Ph.D. Student, Department of Mechanical Engineering, Faculty of Engineering, Imam Hossein University, Tehran, Iran | ||
2Corresponding author: Associate Professor, Department of Mechanical Engineering, Faculty of Engineering, Imam Hossein University, Tehran, Iran | ||
چکیده [English] | ||
In this paper, the inverse dynamics solution for feedforward control of cooperative flexible manipulators is investigated. The internal dynamics of flexible manipulators are unstable, and to obtain a bounded solution to the inverse dynamics problem, the constrained nonlinear optimization method is used. In the optimization method, the aim is to minimize the elastic energy of the manipulators despite several constraints. These constraints include: 1) dynamic equations; 2) Spatial and force trajectory; 3) kinematic constraints limiting the movement of manipulators; 4) constraints related to superfluous variables and 5) constraints of the generalized α method for the stability of the solution. The method used for dynamic modeling is based on the Lagrange equation and finite element discretization. Lagrange multipliers have been used to control the internal forces applied to the payload, and to prevent the change of direction in force control, an inequality constraint has been added to the optimization constraints. This method is implemented on flexible cooperative manipulators and has the ability to control the path of the payload and the force applied to it. | ||
کلیدواژهها [English] | ||
Flexible Manipulator, Finite Element, Lagrange Method, Stable Inversion, Generalized &alpha, Method | ||
مراجع | ||
[1] Brüls O, Bastos Jr G, Seifried R. A stable inversion method for feedforward control of constrained flexible multibody systems. Journal of computational and nonlinear dynamics. 2014;9(1).## [2] Magee DP, Book WJ. Eliminating multiple modes of vibration in a flexible manipulator. In Proceedings IEEE International Conference on Robotics and Automation 1993: 474-479.## [3] Rhim S, Book WJ. Adaptive time-delay command shaping filter for flexible manipulator control. IEEE/ASME Transactions on Mechatronics. 2004 Dec 27;9(4):619-26.## [4] Mohamed Z, Tokhi MO. Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics. 2004 Feb 1;14(1):69-90.## [5] Jackson L, Cable P. Digital Filters and Signal Processing by LB Jackson. Acoustical Society of America; 1987.## [6] Lismonde A. Geometric modeling and inverse dynamics of flexible manipulators. 2020.## [7] Theodore RJ, Ghosal A. Comparison of the assumed modes and finite element models for flexible multilink manipulators. The International journal of robotics research. 1995 Apr;14(2):91-111.## [8] Seifried R, Held A, Dietmann F. Analysis of feed-forward control design approaches for flexible multibody systems. Journal of System Design and Dynamics. 2011;5(3):429-40.## [9] Seifried R. Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody System Dynamics. 2011;27(1):75-93.## [10] Isidori A. Nonlinear control systems. Springer-Verlag; 1997.## [11] Lismonde A, Sonneville V, Brüls O. A geometric optimization method for the trajectory planning of flexible manipulators. Multibody System Dynamics. 2019;47(4):347-62.## [12] Devasia S, Chen D, Paden B. Nonlinear inversion-based output tracking. IEEE Transactions on Automatic Control. 1996;41(7):930-42.## [13] Seifried R. Dynamics of underactuated multibody systems: Springer; 2014.## [14] Bastos G, Seifried R, Brüls O. Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody System Dynamics. 2013;30(3):359-76.## [15] Seifried R, Bastos Jr G, Brüls O. Computation of bounded feed‐forward control for underactuated multibody systems using nonlinear optimization. PAMM. 2011;11(1):69-70.## [16] Taylor DG, Li S. Stable inversion of continuous-time nonlinear systems by finite-difference methods. IEEE Transactions on Automatic Control. 2002;47(3):537-42.## [17] Morrison DD, Riley JD, Zancanaro JF. Multiple shooting method for two-point boundary value problems. Communications of the ACM. 1962;5(12):613-4.## [18] Bastos G, Brüls O. Analysis of open-loop control design and parallel computation for underactuated manipulators. Acta Mechanica. 2020;231(6):2439-56.## [19] Betts JT. Practical methods for optimal control and estimation using nonlinear programming: SIAM; 2010.## [20] Absil PA, Mahony R, Sepulchre R. Optimization algorithms on matrix manifolds. InOptimization Algorithms on Matrix Manifolds 2009 Apr 11. Princeton University Press.## [21] Bellman R. Dynamic programming. Science. 1966;153(3731):34-7.## [22] Bakke V. A maximum principle for an optimal control problem with integral constraints. Journal of Optimization Theory and Applications. 1974;13(1):32-55.## [23] Diehl M, Bock HG, Diedam H, Wieber P-B. Fast direct multiple shooting algorithms for optimal robot control. Fast motions in biomechanics and robotics: Springer; 2006. p. 65-93.## [24] Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. 1993.## [25] Newmark NM. A method of computation for structural dynamics. Journal of the engineering mechanics division. 1959;85(3):67-94.## | ||
آمار تعداد مشاهده مقاله: 126 تعداد دریافت فایل اصل مقاله: 196 |