تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,847,874 |
تعداد دریافت فایل اصل مقاله | 4,708,089 |
روندهاوچالشهای فومهای بر پایه نشاسته و سلولز بهعنوان جایگزینهای رقابتی پلی استایرن منبسطشده | ||
علوم و فنون بستهبندی | ||
دوره 15، شماره 57، خرداد 1403، صفحه 29-49 اصل مقاله (1.4 M) | ||
نوع مقاله: مروری | ||
نویسندگان | ||
نرجس جنتی ها1؛ ناصر صداقت* 2؛ سید محمد علی رضوی2 | ||
1دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد، ایران | ||
2استاد ، گروه علوم و صنایع غذایی، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد، ایران | ||
تاریخ دریافت: 16 مهر 1402، تاریخ بازنگری: 26 آذر 1402، تاریخ پذیرش: 25 اردیبهشت 1403 | ||
چکیده | ||
پلی استایرن منبسطشده یک پلیمر ارزان است و بهطور گستردهای در دسترس است و در فومهای بستهبندی بکار میرود. بااینحال فومهای مبتنی بر پلی استایرن منبسطشده باعث ایجاد مشکلات زیستمحیطی میشوند زیرا تجزیهناپذیر بوده و بازیافت کمی دارند. بنابراین، تولید فومهایی با منابع تجدید پذیر با کاربرد دربسته بندیهای زیستتخریبپذیر و همچنین برای مقابله با مسائل آلودگی پلاستیکها ضروری است. این بررسی تأکید بر راهبردهای متفاوت فرآیند ساخت و اصلاح فومهای بر پایه نشاسته بهمنظور بهبود خواص مکانیکی و ممانعتی نسبت به رطوبت، فومهای زیستتخریبپذیر بر پایه سلولز در مقیاس نانو جهت بهبود خواص مکانیکی و حرارتی و چالشهای مرتبط در توسعه پلاستیکهای زیستی دارد که با هدف بکارگیری آنها بهعنوان جایگزینهای رقابتی با پلی استایرن منبسطشده دربسته بندی هست. منبع نشاسته، شرایط فرآیند کردن، نوع فیبر و افزودن سایر پلیمرها، سازگاری بین اجزای کامپوزیت، بر میزان تخلخل فوم، خواص مکانیکی و ریزساختار آنها تأثیرگذار است . علاوه بر این، این مواد دارای مزایای زیستمحیطی مثبت و قابلیت بازیافت مطلوب میباشند. اگر قرار باشد این مواد بهطور فزایندهای پایدار باشند و به کاهش اثرات منفی ناشی از زبالههای پلاستیکی کمک کنند باید چالشهای موجود در تولید و کاربرد آنها را برطرف نماییم ازجمله این چالشها میتوان ویژگیهای عملکردی مانند دوام، استحکام و قیمت پایین برای استفاده از این محصولات در مقیاس بالا را اشاره نمود. بنابراین مطالعه و بررسی درزمینه فومهای بر پایه مواد زیستتخریبپذیر با خواص مناسب ضروری است. | ||
کلیدواژهها | ||
بیوفوم؛ نشاسته؛ سلولز؛ زیستتخریبپذیر | ||
عنوان مقاله [English] | ||
The Trends and Challenges of Starch and Cellulose-Based Foams are Expanded as Polystyrene Competitors | ||
نویسندگان [English] | ||
Narges Jannatiha1؛ Naser Sedaghat2؛ Seyed Mohammad Ali Razavi2 | ||
1PhD student, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Professor of Food packaging and M.D of ICFP/RCFP Ferdowsi University of Mashhad Faculty of agriculture Eng. Department of Food Science and Technology Research Center of Food Packaging (RCFP) | ||
چکیده [English] | ||
Expanded Styrene is an inexpensive, readily available polymer used in packaging foams. With this, foams created on polystyrene cause environmental problems because they are non-degradable and have little recycling. Therefore, foams with energy sources are necessary for degradable production packaging and to deal with plastic issues. This review emphasizes different strategies of starch-based manufacturing, modification of starch-based foams to improve mechanical properties and durability concerning humidity, biodegradable foams based on cellulose in anno to improve mechanical and thermal properties and related challenges in the development of bioplastic aimed at using them as alternatives to polystyrene in packaging. Starch source, process conditions, type of fiber and addition of other polymers, compatibility between composite components affect foam porosity, mechanical properties and morphology. In addition, these materials have positive environmental benefits and are desirable to be recycled. If these materials are to be increasingly sustainable and the challenges in their production and application due to the reduction of the effects of auxiliary plastic materials, performance characteristics such as durability, strength and low price can be considered for the use of these products. Therefore, study and investigation in the field of foams based on degradable biological materials with suitable properties. | ||
کلیدواژهها [English] | ||
Bio Foam, Starch, Cellolose, Biodegradable | ||
مراجع | ||
[1] V. Behshad and N. Sedaghat, “The evolution of modified atmosphere packaging,” Sci.J. Pack.Sci.Art. vol. 14, no. 55,pp. 63–69,2023, In persion, dor: 20.1001.1.22286675.1402.14.55.6.4 [2] N. Sedaghat and P. boghori, “New achievements of biodegradable protein plasticsvol,” Sci.J. Pack.Sci.Art. vol. 14, no. 55,pp. 63–69,2022 In persion, dor: 20.1001.1.22286675.1401.13.52.4.9 [3] P. X. Ma and R. Langer, “Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering,” Tissue Eng., pp. 47–56, 2003, doi: 10.1385/0-89603-516-6:47. [4] Y. zhang, Zh. Chang, W. Luo, Sh. Gu, W. Li, and J. An, “Effect of starch particles on foam stability and dilational viscoelasticity of aqueous-foam,” Ch. J. Chem. Engin, vol. 23, no. 1, pp. 276–280, 2015. doi: 10.1016/j.cjche.2014.10.015 [5] M. Avella, M. Cocca, M. E. Errico, and G. Gentile, “Polyvinyl alcohol biodegradable foams containing cellulose fibres,” J. Cell. Plast., vol. 48, no. 5, pp. 459–470, 2012, doi: 10.1177/0021955X12449639. [6] C. Demitri et al., “Preparation and characterization of cellulose-based foams via microwave curing,” Interface Focus, vol. 4, no. 1, 2014, doi: 10.1098/rsfs.2013.0053. [7] M. Avella, M. Cocca, M. E. Errico, and G. Gentile, “Biodegradable PVOH-based foams for packaging applications,” J. Cell. Plast., vol. 47, no. 3, pp. 271–281, 2011, doi: 10.1177/0021955X11407401. [8] Z. Fang et al., “Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols,” J. Agric. Food Chem., vol. 67, no. 8, pp. 2220–2226, 2019, doi: 10.1021/acs.jafc.8b05342. [9] B. F. Bergel, L. M. da Luz, and R. M. C. Santana, “Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch,” Prog. Org. Coatings, vol. 118, no. July 2017, pp. 91–96, 2018, doi: 10.1016/j.porgcoat.2018.01.029. [10] M. Neus Angles and A. Dufresne, “Plasticized starch/tuniein whiskers nanocomposites. 1. Structural analysis,” Macromolecules, vol. 33, no. 22, pp. 8344–8353, 2000, doi: 10.1021/ma0008701. [11] S. Pérez, P. M. Baldwin, and D. J. Gallant, Structural Features of Starch Granules I, Third Edit. Elsevier Inc., 2009. doi: 10.1016/B978-0-12-746275-2.00005-7. [12] R. L. Shogren, “Effect of moisture content on the melting and subsequent physical aging of cornstarch,” Carbohydr. Polym., vol. 19, no. 2, pp. 83–90, 1992, doi: 10.1016/0144-8617(92)90117-9. [13] C. M. Machado, P. Benelli, and I. C. Tessaro, “Study of interactions between cassava starch and peanut skin on biodegradable foams,” Int. J. Biol. Macromol., vol. 147, no. xxxx, pp. 1343–1353, 2020, doi: 10.1016/j.ijbiomac.2019.10.098. [14] A. M. Sarmiento, H. L. Guzmán, G. Morales, D. E. Romero, and A. Y. Pataquiva-Mateus, “Expanded Polystyrene (EPS) and Waste Cooking Oil (WCO): From Urban Wastes to Potential Material of Construction,” Waste and Biomass Valorization, vol. 7, no. 5, pp. 1245–1254, 2016, doi: 10.1007/s12649-016-9511-7. [15] C. M. Machado, P. Benelli, and I. C. Tessaro, “Sesame cake incorporation on cassava starch foams for packaging use,” Ind. Crops Prod., vol. 102, pp. 115–121, 2017, doi: 10.1016/j.indcrop.2017.03.007. [16] K. Kaewtatip, M. Poungroi, B. Holló, and K. Mészáros Szécsényi, “Effects of starch types on the properties of baked starch foams,” J. Therm. Anal. Calorim., vol. 115, no. 1, pp. 833–840, 2014, doi: 10.1007/s10973-013-3149-5. [17] N. Kaisangsri, O. Kerdchoechuen, and N. Laohakunjit, “Biodegradable foam tray from cassava starch blended with natural fiber and chitosan,” Ind. Crops Prod., vol. 37, no. 1, pp. 542–546, 2012, doi: 10.1016/j.indcrop.2011.07.034. [18] C. da S. Figueiró, C. I. W. Calcagno, and R. M. C. Santana, “Starch Foams and Their Additives: A Brief Review,” Starch/Staerke, vol. 2300012, pp. 1–14, 2023, doi: 10.1002/star.202300012. [19] J. B. Engel, A. Ambrosi, and I. C. Tessaro, “Development of biodegradable starch-based foams incorporated with grape stalks for food packaging,” Carbohydr. Polym., vol. 225, no. May, p. 115234, 2019, doi: 10.1016/j.carbpol.2019.115234. [20] J. Guan and M. A. Hanna, “Selected morphological and functional properties of extruded acetylated starch-cellulose foams,” Bioresour. Technol., vol. 97, no. 14, pp. 1716–1726, 2006, doi: 10.1016/j.biortech.2004.09.017. [21] F. Robin, C. Dubois, N. Pineau, H. P. Schuchmann, and S. Palzer, “Expansion mechanism of extruded foams supplemented with wheat bran,” J. Food Eng., vol. 107, no. 1, pp. 80–89, 2011, doi: 10.1016/j.jfoodeng.2011.05.041. [22] H. A. Pushpadass, G. S. Babu, R. W. Weber, and M. A. Hanna, “Extrusion of starch-based loose-fill packaging foams#: Effects of temperature, moisture and talc on physical properties,” Packag. Technol. Sci., vol. 21, no. 3, pp. 171–183, 2008, doi: 10.1002/pts.809. [23] R. L. Shogren, J. W. Lawton, and K. F. Tiefenbacher, “Baked starch foams: Starch modifications and additives improve process parameters, structure and properties,” Ind. Crops Prod., vol. 16, no. 1, pp. 69–79, 2002, doi: 10.1016/S0926-6690(02)00010-9. [24] Y. Zhang, C. Li, X. Fu, N. Ma, X. Bao, and H. Liu, “Characterization of a novel starch-based foam with a tunable release of oxygen,” Food Chem., vol. 389, no. April, p. 133062, 2022, doi: 10.1016/j.foodchem.2022.133062. [25] P. Alban-bolaños, U. Cauca, A. A. Ayala-aponte, H. S. Villada-castillo, U. Cauca, and F. Ávalos-belmonte, “Biodegradable flexible foam : novel material based on cassava TPS obtained by extrusion,” pp. 1–25, 2023, doi:10.21203/rs.3.rs-3299098/v1 [26] V. Velasco, E. Sepúlveda, P. Williams, S. Rodríguez-Llamazares, C. Gutiérrez, and N. Valderrama, “Starch-based composite foam for chicken meat packaging,” J. Food Sci. Technol., vol. 59, no. 12, pp. 4594–4602, 2022, doi: 10.1007/s13197-022-05538-6. [27] B. Abbès et al., “Novel extruded starch-beet pulp composites for packaging foams,” Materials (Basel)., vol. 13, no. 7, 2020, doi: 10.3390/ma13071571. [28] F. Kahvand and M. Fasihi, “Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents,” Int. J. Biol. Macromol., vol. 157, pp. 359–367, 2020, doi: 10.1016/j.ijbiomac.2020.04.222. [29] N. Kaisangsri, R. J. Kowalski, O. Kerdchoechuen, N. Laohakunjit, and G. M. Ganjyal, “Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams,” Ind. Crops Prod., vol. 142, no. October 2018, p. 111810, 2019, doi: 10.1016/j.indcrop.2019.111810. [30] Q. Fang and M. A. Hanna, “Functional properties of polylactic acid starch-based loose-fill packaging foams,” Cereal Chem., vol. 77, no. 6, pp. 779–783, 2000, doi: 10.1094/CCHEM.2000.77.6.779. [31] A. Georges, C. Lacoste, and E. Damien, “Effect of formulation and process on the extrudability of starch-based foam cushions,” Ind. Crops Prod., vol. 115, no. January, pp. 306–314, 2018, doi: 10.1016/j.indcrop.2018.02.001. [32] F. Liu et al., “Effects of polyvinyl alcohol content and hydrolysis degree on the structure and properties of extruded starch-based foams,” Chem. Eng. J., vol. 472, no. July, p. 144959, 2023, doi: 10.1016/j.cej.2023.144959. [33] S. Vorawongsagul, P. Pratumpong, and C. Pechyen, “Preparation and foaming behavior of poly (lactic acid)/poly (butylene succinate)/cellulose fiber composite for hot cups packaging application,” Food Packag. Shelf Life, vol. 27, no. December 2020, p. 100608, 2021, doi: 10.1016/j.fpsl.2020.100608. [34] M. Martínez-Sanz et al., “Nano-/microstructure of extruded Spirulina/starch foams in relation to their textural properties,” Food Hydrocoll., vol. 103, no. January, 2020, doi: 10.1016/j.foodhyd.2020.105697. [35] G. M. Glenn and W. J. Orts, “Properties of starch-based foam formed by compression/explosion processing,” Ind. Crops Prod., vol. 13, no. 2, pp. 135–143, 2001, doi: 10.1016/S0926-6690(00)00060-1. [36] N. Soykeabkaew, P. Supaphol, and R. Rujiravanit, “Preparation and characterization of jute-and flax-reinforced starch-based composite foams,” Carbohydr. Polym., vol. 58, no. 1, pp. 53–63, 2004, doi: 10.1016/j.carbpol.2004.06.037. [37] A. E. S. Vercelheze et al., “Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite,” Carbohydr. Polym., vol. 87, no. 2, pp. 1302–1310, 2012, doi: 10.1016/j.carbpol.2011.09.016. [38] B. F. Bergel, L. L. Araujo, and R. M. C. Santana, “Effects of the addition of cotton fibers and cotton microfibers on the structure and mechanical properties of starch foams made from potato starch,” Carbohydr. Polym. Technol. Appl., vol. 2, p. 100167, 2021, doi: 10.1016/j.carpta.2021.100167. [39] T. C. Sunarti, H. Integrani, and K. Syamsu, “Effect of Cocopeat Addition to Some Properties of Cassava Starch-Based Foam,” Macromol. Symp., vol. 353, no. 1, pp. 133–138, 2015, doi: 10.1002/masy.201550318. [40] C. Boischot, C. I. Moraru, and J. L. Kokini, “Factors that influence the microwave expansion of glassy amylopectin extrudates,” Cereal Chem., vol. 80, no. 1, pp. 56–61, 2003, doi: 10.1094/CCHEM.2003.80.1.56. [41] C. I. Moraru and J. L. Kokini, “Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods,” Compr. Rev. Food Sci. Food Saf., vol. 2, no. 4, pp. 147–165, 2003, doi: 10.1111/j.1541-4337.2003.tb00020.x. [42] M. Sjöqvist and P. Gatenholm, “The effect of starch composition on structure of foams prepared by microwave treatment,” J. Polym. Environ., vol. 13, no. 1, pp. 29–37, 2005, doi: 10.1007/s10924-004-1213-8. [43] J. Zhou, J. Song, and R. Parker, “Microwave-assisted moulding using expandable extruded pellets from wheat flours and starch,” Carbohydr. Polym., vol. 69, no. 3, pp. 445–454, 2007, doi: 10.1016/j.carbpol.2007.01.001. [44] A. Lopez-Gil, F. Silva-Bellucci, D. Velasco, M. Ardanuy, and M. A. Rodriguez-Perez, “Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating,” Ind. Crops Prod., vol. 66, pp. 194–205, 2015, doi: 10.1016/j.indcrop.2014.12.025. [45] M. K. Singh, S. Zafar, and M. Talha, “Development and characterisation of poly-L-lactide-based foams fabricated through microwave-assisted compression moulding,” J. Cell. Plast., vol. 55, no. 5, pp. 523–541, 2019, doi: 10.1177/0021955X19850728. [46] A. R. D. V. Morais et al., “Freeze-drying of emulsified systems: A review,” Int. J. Pharm., vol. 503, no. 1–2, pp. 102–114, 2016, doi: 10.1016/j.ijpharm.2016.02.047. [47] N. Soykeabkaew, C. Thanomsilp, and O. Suwantong, A review: Starch-based composite foams, vol. 78, no. August. Elsevier Ltd, 2015. doi: 10.1016/j.compositesa.2015.08.014. [48] J. D. Mathias, N. Tessier-Doyen, and P. Michaud, “Development of a chitosan-based biofoam: Application to the processing of a porous ceramic material,” Int. J. Mol. Sci., vol. 12, no. 2, pp. 1175–1186, 2011, doi: 10.3390/ijms12021175. [49] X. C. Tang and M. J. Pikal, “Design of Freeze-Drying Processes for Pharmaceuticals : Practical Advice,” vol. 21, no. 2, 2004. doi:10.1023/B:PHAM.0000016234.73023.75 [50] S. H. Alavi, S. S. H. Rizvi, and P. Harriott, “Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. I: Model development,” Food Res. Int., vol. 36, no. 4, pp. 309–319, 2003, doi: 10.1016/S0963-9969(02)00222-3. [51] M. Chauvet, M. Sauceau, F. Baillon, and J. Fages, “Blending and foaming thermoplastic starch with poly (lactic acid) by CO2-aided hot melt extrusion,” J. Appl. Polym. Sci., vol. 138, no. 14, pp. 1–12, 2021, doi: 10.1002/app.50150. [52] C. Chang, M. Venkatesan, C. Cho, P. chung, J. chandraserkar, C. Lee, H. Wang, Ch. Wong, and Ch. Kuo, “Thermoplastic Starch with Poly ( butylene adipate- co- terphthalate) blend foamed by supercritical carbon dioxid polymers,” Polym, vol. 14, no. 10, 1952, 2022, doi: 10.3390/polym14101952 [53] B. Lu, Q. Lin, Z. Yin, F. Lin, X. Chen, and B. Huang, “Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption,” Cellulose, vol. 28, no. 1, pp. 273–288, 2021, doi: 10.1007/s10570-020-03553-4. [54] Y. Xu and M. A. Hanna, “Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene adipate-co-terephthalate),” Carbohydr. Polym., vol. 59, no. 4, pp. 521–529, 2005, doi: 10.1016/j.carbpol.2004.11.007. [55] J. Guan, K. M. Eskridge, and M. A. Hanna, “Acetylated starch-polylactic acid loose-fill packaging materials,” Ind. Crops Prod., vol. 22, no. 2, pp. 109–123, 2005, doi: 10.1016/j.indcrop.2004.06.004. [56] K. Manoi and S. S. H. Rizvi, “Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion,” Carbohydr. Polym., vol. 81, no. 3, pp. 687–694, 2010, doi: 10.1016/j.carbpol.2010.03.042. [57] P. Lu, H. Zhao, M. Zhang, X. Bi, X. Ge, and M. Wu, “Thermal insulation and antibacterial foam templated from bagasse nanocellulose /nisin complex stabilized Pickering emulsion,” Colloids Surfaces B Biointerfaces, vol. 220, no. April, p. 112881, 2022, doi: 10.1016/j.colsurfb.2022.112881. [58] J. Shey, S. H. Imam, G. M. Glenn, and W. J. Orts, “Properties of baked starch foam with natural rubber latex,” Ind. Crops Prod., vol. 24, no. 1, pp. 34–40, 2006, doi: 10.1016/j.indcrop.2005.12.001. [59] N. Kaisangsri, O. Kerdchoechuen, and N. Laohakunjit, “Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil,” Carbohydr. Polym., vol. 110, pp. 70–77, 2014, doi: 10.1016/j.carbpol.2014.03.067. [60] A. Da Silva, L. M. Nievola, C. A. Tischer, S. Mali, and P. C. S. Faria-Tischer, “Cassava starch-based foams reinforced with bacterial cellulose,” J. Appl. Polym. Sci., vol. 130, no. 5, pp. 3043–3049, 2013, doi: 10.1002/app.39526. [61] J. W. Lawton, R. L. Shogren, and K. F. Tiefenbacher, “Aspen fiber addition improves the mechanical properties of baked cornstarch foams,” Ind. Crops Prod., vol. 19, no. 1, pp. 41–48, 2004, doi: 10.1016/S0926-6690(03)00079-7. [62] S. Y. Lee, H. Chen, and M. A. Hanna, “Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type,” Ind. Crops Prod., vol. 28, no. 1, pp. 95–106, 2008, doi: 10.1016/j.indcrop.2008.01.009. [63] Y. Qiu et al., “Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals,” Cellulose, vol. 25, no. 3, pp. 1795–1807, 2018, doi: 10.1007/s10570-018-1703-9. [64] L. Wang and M. Sánchez-Soto, “Green bio-based aerogels prepared from recycled cellulose fiber suspensions,” RSC Adv., vol. 5, no. 40, pp. 31384–31391, 2015, doi: 10.1039/c5ra02981c. [65] R. Mohammadinejad, S. Karimi, S. Iravani, and R. S. Varma, “Plant-derived nanostructures: types and applications,” Green Chem., vol. 18, no. 1, pp. 20–52, 2015, doi: 10.1039/c5gc01403d. [66] N. Lavoine and L. Bergström, “Nanocellulose-based foams and aerogels: Processing, properties, and applications,” J. Mater. Chem. A, vol. 5, no. 31, pp. 16105–16117, 2017, doi: 10.1039/c7ta02807e. [67] M. O. Reis, J. B. Olivato, A. P. Bilck, J. Zanela, M. V. E. Grossmann, and F. Yamashita, “Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax,” Ind. Crops Prod., vol. 112, no. December 2016, pp. 481–487, 2018, doi: 10.1016/j.indcrop.2017.12.045. [68] M. A. Basuki, H. Suryanto, A. Larasati, P. Puspitasari, and Mujiono, “The effect of ZnO addition against crystallinity and water absorption capacity of biofoam based cassava starch reinforced bacterial cellulose,” AIP Conf. Proc., vol. 2120, 2019, doi: 10.1063/1.5115692. [69] N. M. Moo-Tun, G. Iñiguez-Covarrubias, and A. Valadez-Gonzalez, “Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design,” Polym. Test., vol. 86, no. February, 2020, doi: 10.1016/j.polymertesting.2020.106482. [70] M. M. González del Campo, B. Caja-Munoz, M. Darder, P. Aranda, L. Vázquez, and E. Ruiz-Hitzky, “Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose,” Appl. Clay Sci., vol. 189, no. February, p. 105538, 2020, doi: 10.1016/j.clay.2020.105538. [71] A. F. Sousa et al., “Thermosetting AESO-bacterial cellulose nanocomposite foams with tailored mechanical properties obtained by Pickering emulsion templating,” Polymer (Guildf)., vol. 118, pp. 127–134, 2017, doi: 10.1016/j.polymer.2017.04.073. [72] J. Han et al., “Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams,” Cellulose, vol. 24, no. 10, pp. 4433–4448, 2017, doi: 10.1007/s10570-017-1409-4. [73] F. Molkara, S. K. Najafi, and I. Ghasemi, “Foam morphology and sound transmission loss of foamed wood flour/low-density polyethylene (LDPE)/nanoclay composites,” J. Thermoplast. Compos. Mater., vol. 31, no. 11, pp. 1470–1482, 2018, doi: 10.1177/0892705717738298. [74] E. D. M. Teixeira et al., “Starch/fiber/poly(lactic acid) foam and compressed foam composites,” RSC Adv., vol. 4, no. 13, pp. 6616–6623, 2014, doi: 10.1039/c3ra47395c. [75] M. Guan, Z. Zhang, C. Yong, and K. Du, “Interface compatibility and mechanisms of improved mechanical performance of starch/poly(lactic acid) blend reinforced by bamboo shoot shell fibers,” J. Appl. Polym. Sci., vol. 136, no. 35, pp. 1–8, 2019, doi: 10.1002/app.47899. [76] M. Solati, A. Saeidi, and I. Ghasemi, “The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch,” Iran. Polym. J. (English Ed., vol. 28, no. 8, pp. 649–658, 2019, doi: 10.1007/s13726-019-00731-5. [77] J. Muller, C. González-Martínez, and A. Chiralt, “Combination Of Poly(lactic) acid and starch for biodegradable food packaging,” Materials (Basel)., vol. 10, no. 8, pp. 1–22, 2017, doi: 10.3390/ma10080952. [78] B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay,” Carbohydr. Polym., vol. 110, pp. 430–439, 2014, doi: 10.1016/j.carbpol.2014.04.024. [79] E. de M. Teixeira, A. A. S. Curvelo, A. C. Corrêa, J. M. Marconcini, G. M. Glenn, and L. H. C. Mattoso, “Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid),” Ind. Crops Prod., vol. 37, no. 1, pp. 61–68, 2012, doi: 10.1016/j.indcrop.2011.11.036. [80] R. Al-Itry, K. Lamnawar, and A. Maazouz, “Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy,” Polym. Degrad. Stab., vol. 97, no. 10, pp. 1898–1914, 2012, doi: 10.1016/j.polymdegradstab.2012.06.028. [81] Y. Deng, C. Yu, P. Wongwiwattana, and N. L. Thomas, “Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends Through Co-continuous Phase Morphology,” J. Polym. Environ., vol. 26, no. 9, pp. 3802–3816, 2018, doi: 10.1007/s10924-018-1256-x. [82] E. Sritham, P. Phunsombat, and J. Chaishome, “Tensile properties of PLA/PBAT blends and PLA fibre-reinforced PBAT composite,” MATEC Web Conf., vol. 192, pp. 1–4, 2018, doi: 10.1051/matecconf/201819203014. [83] A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, “Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties,” Int. J. Biol. Macromol., vol. 101, pp. 75–83, 2017, doi: 10.1016/j.ijbiomac.2017.03.045. [84] W. Sanhawong, P. Banhalee, S. Boonsang, and S. Kaewpirom, “Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam,” Ind. Crops Prod., vol. 108, no. December 2016, pp. 756–766, 2017, doi: 10.1016/j.indcrop.2017.07.046. [85] J. P. Cruz-Tirado, R. Vejarano, D. R. Tapia-Blácido, G. Barraza-Jáuregui, and R. Siche, “Biodegradable foam tray based on starches isolated from different Peruvian species,” Int. J. Biol. Macromol., vol. 125, pp. 800–807, 2019, doi: 10.1016/j.ijbiomac.2018.12.111. [86] G. M. Glenn, W. J. Orts, and G. A. R. Nobes, “Starch, fiber and CaCo3 effects on the physical properties of foams made by a baking process,” Ind. Crops Prod., vol. 14, no. 3, pp. 201–212, 2001, doi: 10.1016/S0926-6690(01)00085-1. [87] D. Salarbashi et al., “Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles,” Carbohydr. Polym., vol. 140, pp. 220–227, 2016, doi: 10.1016/j.carbpol.2015.12.043. [88] S. Shankar, X. Teng, G. Li, and J. W. Rhim, “Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films,” Food Hydrocoll., vol. 45, pp. 264–271, 2015, doi: 10.1016/j.foodhyd.2014.12.001. [89] S. Ketkaew et al., “Effect of Oregano Essential Oil Content on Properties of Green Biocomposites Based on Cassava Starch and Sugarcane Bagasse for Bioactive Packaging,” J. Polym. Environ., vol. 26, no. 1, pp. 311–318, 2018, doi: 10.1007/s10924-017-0957-x. [90] J. P. Cruz-Tirado et al., “Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil,” Food Packag. Shelf Life, vol. 23, no. September 2019, p. 100457, 2020, doi: 10.1016/j.fpsl.2019.100457. [91] E. J. Jeong, C. K. Park, and S. H. Kim, “Fabrication of microcellular polylactide/modified silica nanocomposite foams,” J. Appl. Polym. Sci., vol. 137, no. 17, pp. 1–10, 2020, doi: 10.1002/app.48616. [92] K. Zhang et al., “Fabrication of highly interconnected porous poly(ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching,” J. Mater. Sci., vol. 54, no. 6, pp. 5112–5126, 2019, doi: 10.1007/s10853-018-3166-7. [93] N. H. P. Rodrigues, J. T. de Souza, R. L. Rodrigues, M. H. G. Canteri, S. M. K. Tramontin, and A. C. de Francisco, “Starch-based foam packaging developed from a by-product of potato industrialization (Solanum tuberosum L.),” Appl. Sci., vol. 10, no. 7, 2020, doi: 10.3390/app10072235. [94] J. C. Spada, S. F. Seibert, and I. C. Tessaro, “Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) Coating on the Properties of Composites with High Content of Rice Husk,” J. Polym. Environ., vol. 29, no. 4, pp. 1324–1331, 2021, doi: 10.1007/s10924-020-01957-8. [95] C. Chiarathanakrit, J. Mayakun, A. Prathep, and K. Kaewtatip, “Comparison of the effects of calcified green macroalga (Halimeda macroloba Decaisne) and commercial CaCO3 on the properties of composite starch foam trays,” Int. J. Biol. Macromol., vol. 121, pp. 71–76, 2019, doi: 10.1016/j.ijbiomac.2018.09.191. [96] K. Kaewtatip, C. Chiarathanakrit, and S. A. Riyajan, “The effects of egg shell and shrimp shell on the properties of baked starch foam,” Powder Technol., vol. 335, no. 2017, pp. 354–359, 2018, doi: 10.1016/j.powtec.2018.05.030. [97] R. Sattar, A. Kausar, and M. Siddiq, “Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review,” J. Plast. Film Sheeting, vol. 31, no. 2, pp. 186–224, 2015, doi: 10.1177/8756087914535126. [98] R. Bhat, N. Abdullah, R. H. Din, and G. S. Tay, “Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste,” J. Food Eng., vol. 119, no. 4, pp. 707–713, 2013, doi: 10.1016/j.jfoodeng.2013.06.043. [99] B. F. Bergel, L. M. da Luz, and R. M. C. Santana, “Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch,” Prog. Org. Coatings, vol. 106, pp. 27–32, 2017, doi: 10.1016/j.porgcoat.2017.02.010. [100] M. P. Motloung, V. Ojijo, J. Bandyopadhyay, and S. S. Ray, “Cellulose nanostructure-based biodegradable nanocomposite foams: A brief overview on the recent advancements and perspectives,” Polymers (Basel)., vol. 11, no. 8, 2019, doi: 10.3390/polym11081270. [101] J. Dlouhá, L. Suryanegara, and H. Yano, “The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology,” Soft Matter, vol. 8, no. 33, pp. 8704–8713, 2012, doi: 10.1039/c2sm25909e. [102] H. Y. Mi, X. Jing, J. Peng, M. R. Salick, X. F. Peng, and L. S. Turng, “Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams,” Cellulose, vol. 21, no. 4, pp. 2727–2741, 2014, doi: 10.1007/s10570-014-0327-y. [103] N. Zhao et al., “Foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents,” Ind. Eng. Chem. Res., vol. 53, no. 30, pp. 11962–11972, 2014, doi: 10.1021/ie502018v. [104] H. Storz and K. D. Vorlop, “Bio-based plastics: Status, challenges and trends,” Landbauforsch. Volkenrode, vol. 63, no. 4, pp. 321–332, 2013, doi: 10.3220/LBF-2013-321-332. [105] H. Karan, C. Funk, M. Grabert, M. Oey, and B. Hankamer, “Green Bioplastics as Part of a Circular Bioeconomy,” Trends Plant Sci., vol. 24, no. 3, pp. 237–249, 2019, doi: 10.1016/j.tplants.2018.11.010. [106] S. Pathak, C. Sneha, and B. B. Mathew, “Bioplastics: Its Timeline Based Scenario & Challenges,” J. Polym. Biopolym. Phys. Chem., vol. 2, no. 4, pp. 84–90, 2014, doi: 10.12691/jpbpc-2-4-5. [107] S. O. Cinar, Z. K. Chong, M. A. Kucuker, N. Wieczorek, U. Cengiz, and K. Kuchta, “Bioplastic production from microalgae: A review,” Int. J. Environ. Res. Public Health, vol. 17, no. 11, pp. 1–21, 2020, doi: 10.3390/ijerph17113842. [108] B. Yadav, A. Pandey, L. R. Kumar, and R. D. Tyagi, “Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach,” Bioresour. Technol., vol. 298, p. 122584, 2020, doi: 10.1016/j.biortech.2019.122584. [109] S. Price, U. Kuzhiumparambil, M. Pernice, and P. J. Ralph, “Cyanobacterial polyhydroxybutyrate for sustainable bioplastic production: Critical review and perspectives,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 104007, 2020, doi: 10.1016/j.jece.2020.104007. [110] I. S. Sidek, S. F. S. Draman, S. R. S. Abdullah, and N. Anuar, “Current Development on Bioplastics and Its Future Prospects: an Introductory Review,” INWASCON Technol. Mag., vol. 1, pp. 03–08, 2019, doi: 10.26480/itechmag.01.2019.03.08. [111] L. Alaerts, M. Augustinus, and K. Van Acker, “Impact of bio-based plastics on current recycling of plastics,” Sustain., vol. 10, no. 5, 2018, doi: 10.3390/su10051487. [112] Liliani, B. Tjahjono, and D. Cao, “Advancing bioplastic packaging products through co-innovation: A conceptual framework for supplier-customer collaboration,” J. Clean. Prod., vol. 252, p. 119861, 2020, doi: 10.1016/j.jclepro.2019.119861. | ||
آمار تعداد مشاهده مقاله: 200 تعداد دریافت فایل اصل مقاله: 95 |