
تعداد نشریات | 38 |
تعداد شمارهها | 1,260 |
تعداد مقالات | 9,131 |
تعداد مشاهده مقاله | 8,464,472 |
تعداد دریافت فایل اصل مقاله | 5,164,933 |
بهبود ساختار تقویت کننده رامان کریستال فوتونی هایبرید به کمک مواد اپتوفلوییدی | ||
الکترومغناطیس کاربردی | ||
مقاله 6، دوره 4، شماره 3، آبان 1395، صفحه 57-64 اصل مقاله (1.05 M) | ||
نویسندگان | ||
امیره سیدفرجی* 1؛ وحید احمدی2 | ||
1دانشگاه الزهرا (س) | ||
2تربیت مدرس | ||
تاریخ دریافت: 23 مرداد 1396، تاریخ بازنگری: 06 اسفند 1397، تاریخ پذیرش: 28 شهریور 1397 | ||
چکیده | ||
در این مقاله، با استفاده از موجبر کریستال فوتونی هایبرید، ساختاری برای تقویت کننده رامان پیشنهاد می شود که در آن به کمک ایجاد نانو حفره های پر شده با مواد اپتوفلوییدی در مسیر پمپ و سیگنال، سرعت گروه پمپ و سیگنال کاهش یافته و در نتیجه بهره و عرض باند تقویت رامان افزایش می یابد. در این ساختار، پارامترهای هندسی برای دست یابی به بهره و عرض باند تقویت بزرگتر، بهبود می یابند. معادلات ماکسول به روش FDTD و با درنظر گرفتن اثرات غیرخطی جذب دو فوتونی، جذب حامل آزاد، اثر کِر و مدلاسیون فاز خودی در موجبر کریستال فوتونی هایبرید حل می شوند. سپس با تزریق هم زمان 3 پمپ با طول موج و توان مناسب به ساختار تقویت کننده رامان با طول um 350، بهره رامان 10.06 db و عرض باند تقویت nm 5.75 حاصل می شود. | ||
کلیدواژهها | ||
کریستال فوتونی هایبرید؛ مواد اپتوفلوییدی؛ تقویت کننده رامان؛ معادلات ماکسول | ||
عنوان مقاله [English] | ||
Enhanced Raman Amplification in Hybrid Photonic Crystal Based Waveguide Structure by Using Optofluidic Materials | ||
چکیده [English] | ||
In this paper, we propose a hybrid photonic crystal Raman amplifier structure which in this structure using engineered nanoholes filled with optofluidic material in the signal and pump paths, we reduce pump and signal group velocity to improve the structure and achieve larger Raman gain and bandwidth. Geometrical parameters are changed to obtain enhanced Raman amplification with a greater gain and broader bandwidth. The Maxwell equations are solved using finite difference time domain method considering two photon absorption, free carrier absorption, kerr effect and self phase modulation (SPM) effects. Finally, by injecting 3 pumps with appropriate wavelength and power into the Raman amplifier structure with amplification length of 350 µm, we increased the Raman gain to 10.06 dB and Raman bandwidth to 5.72 nm. | ||
کلیدواژهها [English] | ||
hybrid photonic crystal, optofluidic material, Raman amplifier, Maxwell Equations | ||
مراجع | ||
[1] H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Monolithic integrated ring resonator Raman silicon laser and amplifier,” Proc. SPIE, vol. 6485, pp. 1- 8, 2007. [2] B. Jalali, V. Raghunathan, and R. Shori, “Prospects of silicon Mid-IR raman lasers,” IEEE Journal of selected topics in quantum electronics, vol. 12, pp. 1618-1627, 2006. [3] C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolainand, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 344–356, 2010. [4] B. Corcoran, C. Monat, M. D. Pelusi, C. Grillet, T. P. White, L.O'Faolain, T. F.Krauss, B. J.Eggleton and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express, vol. 18, pp. 7770–7781, 2010. [5] R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Optics Express, vol. 12, pp. 2774-2780, 2004. [6] A. Liu, H. Rong, and M. Paniccia, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Optics Express, vol. 12, pp. 4261-4268, 2004. [7] I. D. Rukhlenko and M. Premaratne, “Spectral compression and group delay of optical pulses in silicon Raman amplifiers,” Opt. Lett., vol. 35, pp. 3138-3140, 2010. [8] F. Kroeger, A. Ryasnyanskiy, A. Baron, N. Dubreuil, P. Delaye, R. Frey, G. Roosen, and D. Peyrade, “Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides,” Applied Physics Letter, vol. 96, pp. 241102-1-241102-3, 2010. [9] R. Claps, V. Raghunathan, O. Boyraz, P. Koonath, D. Dimitropoulos, and B. Jalali, “Raman amplification and lasing in SiGewaveguides,” Optics Express, vol. 13, pp. 2459-2466, 2005. [10] A. Seidfaraji and V. Ahmadi, “Enhanced Raman amplification by photonic crystal based waveguide structure,” ICTON, pp. 1-4, 2012. [11] A. Seyedfaraji and V. Ahmadi, “Improvement of Raman amplifier bandwidth by means of slow light in photonic crystal based waveguide structure,” Opt Quant Electron, vol. 45, pp. 1237–1248, 2013. [12] Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes,” Japanese Journal of Applied Physics, vol. 52, 2013. [13] Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides,” Japanese Journal of Applied Physics, vol. 54, 2015. [14] A. Seyedfaraji and V. Ahmadi, “Enhanced Raman amplification by hybrid photonic crystals,” ICTON, pp. 1-4, 2010. [15] H. Yi-Hua, S. Iwamoto, and Y. Arakawa, “Design of slow-light grating waveguides for silicon Raman amplifier,” CLEO-PR, pp. 1-2, 2013. [16] M. Krause, H. Renner, and E. Brinkmeyer, “Silicon Raman amplifiers with ring-resonator-enhanced pump power,” IEEE J. Sel. Top. Quant., vol. 16, pp. 216-225, 2010. [17] I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P.Agrawal, “Optimization of raman amplification in silicon waveguide with finite facet reflectivities,” IEEE J. Sel. Top. Quant., vol. 16, pp. 226-233, 2010. [18] J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated raman scattering in slow-light photonic crystal waveguides,” Optics Letters, vol. 31, pp. 1235-1237, 2006. [19] D. R. Solli, P. Koonath, and B. Jalali, “Broadband Raman amplification in silicon,” Appl. Phys. Lett., vol. 93, pp. 191105-1–191105-3, 2008. [20] S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidicinfiltration,” Appl. Opt., vol. 50, pp. 4048-4053, 2011. [21] S. Bakhshi, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer,” Appl. Opt., vol. 51, pp. 2687–2692, 2012. [22] A. Seyedfaraji and V. Ahmadi, “New design of ring-based raman amplifier using optofluidic materials,” Optical Engineering, vol. 52, pp. 097103-1- 097103-6, 2013. [23] R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys., vol. 40, pp. R249-R271, 2007. [24] S. Keyvaninia, E. D. Ahmadi, F. Farman, R. Taghiabadi, and A. Bahrampour, “Gain variation of Raman amplifier in silicon micro-ring coupled resonator optical waveguides,” Proc. SPIE, vol. 6998, pp. 699818-1-699818-8, 2008. [25] T. J. A. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery,” Optical Microcavities, Ph.D thesis, California Institute of Technology, 2004. [26] Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Optics Express, vol. 15, pp. 16604-16644, 2007. [27] J. K. Doylend, O. Cohen, M. R. Lee, O. Raday, S. Xu, V. Sih, H. Rong, and M. Paniccia, “Tunable ring resonators for silicon Raman laser and amplifier applications,” Proc. SPIE, vol. 6896, pp. 68960Q-1-68960Q-9, 2008. | ||
آمار تعداد مشاهده مقاله: 357 تعداد دریافت فایل اصل مقاله: 247 |