
تعداد نشریات | 34 |
تعداد شمارهها | 1,336 |
تعداد مقالات | 9,656 |
تعداد مشاهده مقاله | 9,885,723 |
تعداد دریافت فایل اصل مقاله | 6,086,764 |
کاربرد روش های بهبود الگوریتم بهینهسازی فراکاوشی برای طراحی پلهای بتنی مسلح در مقیاس واقعی: مطالعه موردی تقاطع انهر کمربندی ارومیه | ||
علوم و فنون سازندگی | ||
دوره 6، شماره 1 - شماره پیاپی 18، مرداد 1404، صفحه 51-61 اصل مقاله (903.71 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سینا شیرگیر* 1؛ پویا آقابیگی2 | ||
1دانشکده مهندسی عمران، دانشگاه تبریز | ||
2مدیریت دانش موسسه عاشورا، تبریز، ایران | ||
تاریخ دریافت: 27 خرداد 1402، تاریخ بازنگری: 09 مرداد 1402، تاریخ پذیرش: 09 مهر 1402 | ||
چکیده | ||
یادگیری مبتنی بر تضاد (OBL) یک رویکرد موثر برای بهبود عملکرد الگوریتمهای بهینهسازی فراکاوشی است که معمولا برای حل مسائل مهندسی پیچیده استفاده میشود. در این مقاله استراتژی یادگیری متضاد برای ترکیب با الگوریتم بهینهسازی ملخ (GOA) ارائه میشود. در این الگوریتم پیشنهادی، راهحلهای تولید شده توسط الگوریتم GOA مرتب شده و به دو راهحل خوب و بد تقسیم میشوند، سپس راهحلهای بد انتخاب میشوند تا با استفاده از آموزش برمبنای تضاد، راه حل های جدید تولید شود. برای تأیید قابلیت الگوریتم پیشنهادی، برخی از توابع ریاضیاتی معیار آزمایش شدند. علاوه بر این، عملکرد الگوریتم OGOA با اجرای یک طراحی بهینه از یک پل بتن مسلح با مقیاس واقعی ارزیابی شد. برای شناسایی پارامترهای موثر در طراحی اجزای سازهای پلهای بتن مسلح، تحلیل حساسیت انجام شده است. علاوه بر این، هزینه کل مصالح در ستونهای پایهها و عرشه پل به عنوان یک تابع هدف تعریف شد. همچنین ابعاد مقاطع و میلگردهای فولادی طولی به عنوان متغیرهای طراحی انتخاب میشوند. نتایج شبیهسازیها پایداری و استحکام روش OGOA پیشنهادی را در مقایسه با GOA استاندارد نشان میدهد. همچنین الگوریتم پیشنهادی OGOA در طراحی بهینه ستونهای و عرشه پلهای بتنی مسلح یک روش کارآمد میباشد. | ||
کلیدواژهها | ||
پلهای بتنی مسلح؛ بهینهسازی؛ الگوریتم بهینه سازی ملخ؛ آموزش برمبنای تضاد | ||
عنوان مقاله [English] | ||
The application of improvement methods in the meta-heuristic algorithm for the design of reinforced concrete bridges in real scale: a case study of Urmia ring road | ||
نویسندگان [English] | ||
Sina Shirgir1؛ Pouya Aghabeigi2 | ||
1Faculty of Civil Engineering- University of Tabriz | ||
2Knowledge management, Ashura institute, Tabriz, Iran | ||
چکیده [English] | ||
Opposition-based learning (OBL) is an effective approach to improve the performance of meta-heuristic optimization algorithms that are commonly used to solve complex engineering problems. In this paper, an opposite learning strategy is presented to combine with the Grasshopper Optimization Algorithm (GOA). In this proposed algorithm (OGOA), the solutions generated by the GOA algorithm are sorted and divided into good and bad solutions, then the bad solutions are selected to generate new solutions using opposition-based learning. To verify the performance of the proposed algorithm, some benchmark mathematical functions were tested. In addition, the performance of the OGOA algorithm was evaluated by implementing an optimal design of a real-scale reinforced concrete bridge. To identify the effective parameters in the design of structural components of reinforced concrete bridges, sensitivity analysis has been performed. In addition, the total cost of materials in the foundation columns and bridge deck was defined as an objective function. Also, the dimensions of sections and longitudinal steel bars are selected as design variables. The simulation results show the stability and robustness of the proposed OGOA method compared to the standard GOA. Also, the proposed OGOA is an efficient method for the optimal design of columns and decks of reinforced concrete bridges. | ||
کلیدواژهها [English] | ||
Reinforced concrete bridges, Optimization, Grasshopper optimization algorithm, Opposition-based learning | ||
مراجع | ||
[1] Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73. [2] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE. [3] Ghaemi, M., & Feizi-Derakhshi, M. R. (2014). Forest optimization algorithm. Expert Systems with Applications, 41(15), 6676-6687. [4] Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee. [5] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28- 39. [6] Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. [7] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. [8] Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in engineering software, 105, 30-47. [9] Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872. [10] Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems. Advances in engineering software, 114, 163-191. [11] Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34. [12] Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609. [13] Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133. [14] Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. simulation, 76(2), 60-68. [15] Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248. [16] Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta mechanica, 213(3-4), 267-289. [17] Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: a novel meta-heuristic method. Computers & Structures, 139, 18-27. [18] Rostami, S. (2021). Optimizing well placement via metaheuristic algorithms (case study: Shadegan fields). Construction science and technology, 2(1), 55-69. (In Persian) [19] Shirgir, S., Azar, B. F., & Hadidi, A. (2020). Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model. Earthquakes and Structures, 18(4), 493-506. [20] Azar, B. F., Veladi, H., Raeesi, F., & Talatahari, S. (2020). Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer. Engineering Structures, 214, 110657. [21] Raeesi, F., Azar, B. F., Veladi, H., & Talatahari, S. (2020, August). An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm. In Structures (Vol. 26, pp. 406-416). Elsevier. [22] Gölcük, İ., & Ozsoydan, F. B. (2020). Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary domains. Knowledge-Based Systems, 194, 105586. [23] Li, M. W., Wang, Y. T., Geng, J., & Hong, W. C. (2021). Chaos cloud quantum bat hybrid optimization algorithm. Nonlinear Dynamics, 103, 1167-1193. [24] Raeesi, F., Veladi, H., Azar, B. F., & Talatahari, S. (2020). A hybrid CSS-GW algorithm for finding optimum location of multi semi-active MR dampers in buildings. International Journal of Modelling, Identification and Control, 35(3), 191-202. [25] Shirgir, S., Azar, B. F., & Hadidi, A. (2020, October). Reliability-based simplification of Bouc-Wen model and parameter identification using a new hybrid algorithm. In Structures (Vol. 27, pp. 297-308). Elsevier. [26] Raeesi, F., Shirgir, S., Azar, B. F., Veladi, H., & Ghaffarzadeh, H. (2020). Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD. Earthquakes and Structures, 18(6), 719-730. [27] Tsinidis, G., Papantou, M., & Mitoulis, S. (2019). Response of integral abutment bridges under a sequence of thermal loading and seismic shaking. Earthquakes and Structures, 16(1), 11-28. [28] Zhang, J., Wu, D., Li, Q., & Zhang, Y. (2019). Experimental and numerical investigation of track-bridge interaction for a longspan bridge. Structural Engineering and Mechanics, An Int'l Journal, 70(6), 723-735. [29] Erdogan, Y. S., & Catbas, N. F. (2020). Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction. Earthquakes and Structures, 18(1), 1-14. [30] Nanclares, G., Ambrosini, D., Curadelli, O., & Domizio, M. (2020). Nonlinear dynamic analysis of a RC bridge subjected to seismic loading. Smart Structures and Systems, An International Journal, 26(6), 765-779. [31] Lee, D. H., & Elnashai, A. S. (2002). Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction. Structural Engineering and Mechanics, 13(3), 241- 260. [32] Chiou, J. S., Jheng, Y. W., & Hung, H. H. (2019). Numerical simulation of bridge piers with spread footings under earthquake excitation. Earthquakes and Structures, 16(6), 691-704. [33] Song, S., Wu, Y. H., Wang, S., & Lei, H. G. (2022). Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands. Earthquakes and Structures, 22(2), 157-168. [34] Liu, X., Jiang, L., Xiang, P., Lai, Z., Zhang, Y., & Liu, L. (2022). A stochastic finite element method for dynamic analysis of bridge structures under moving loads. Structural Engineering and Mechanics, 82(1), 31-40. [35] Mousavi, S. A., & Heydari, S. (2023). Health monitoring of jinnah bridge in tehran using the time-frequency domain approach. Construction science and technology, 3(3), 49-58. (In Persian). [36] Gkatzogias, K. I., & Kappos, A. J. (2015). Deformation-based seismic design of concrete bridges. Earthquakes and Structures, 9(5), 1045-1067. [37] Kehila, F., Kibboua, A., Bechtoula, H., & Remki, M. (2018). Seismic performance assessment of RC bridge piers designed with the Algerian seismic bridges regulation. Earthquakes and Structures, 15(6), 701-713. [38] Kutyłowski, R., & Rasiak, B. (2014). Application of topology optimization to bridge girder design. Structural Engineering and Mechanics, An Int'l Journal, 51(1), 39-66. [39] Resmy, V. R., & Rajasekaran, C. (2020). Topology Optimization of Concrete Dapped Beams Under Multiple Constraints. In Numerical Optimization in Engineering and Sciences: Select Proceedings of NOIEAS 2019 (pp. 43-51). Springer Singapore. [40] Mohammadzadeh, S., & Nouri, M. (2013). An improved algorithm in railway truss bridge optimization under stress, displacement and buckling constraints imposed on moving load. Structural Engineering and Mechanics, An Int'l Journal, 46(4), 571-594. [41] Hassanain, M. A., & Loov, R. E. (2003). Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering, 30(5), 841-849. [42] Liu, S., Huang, B., & Xie, Y. M. (2021). Effects of longitudinal and transverse curvatures on optimal design of shell footbridge. Structural Engineering and Mechanics, 80(1), 27-36. [43] Artar, M., Catar, R., & Daloglu, A. T. (2017). Optimum design of steel bridges including corrosion effect using TLBO. Structural engineering and mechanics: An international journal, 63(5), 607-615. [44] Ghiamat, R., Madhkhan, M., & Bakhshpoori, T. (2019). Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm. Structural Engineering and Mechanics, An Int'l Journal, 72(4), 503-512. [45] Tizhoosh, H. R. (2005, November). Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) (Vol. 1, pp. 695-701). IEEE. [46] Standard, AASHTO. 2002. 'Standard specifications for highway bridges', American Association of Highway and Transportation Officials, Washington, DC. | ||
آمار تعداد مشاهده مقاله: 250 تعداد دریافت فایل اصل مقاله: 268 |