- Prentice, C., Zeidan, S., & Wang, X. (2020). Personality, trait EI and coping with COVID 19 measures. International Journal of Disaster Risk Reduction, 51, 101789.
- Werdiningtyas, R., Wei, Y., & Western, A. W. (2020). The evolution of policy instruments used in water, land and environmental governances in Victoria, Australia from 1860–2016. Environmental Science & Policy, 112, 348-360.
- Zhang, Y., Li, X., Jiang, F., Song, Y., & Xu, M. (2020). Industrial policy, energy and environment efficiency: evidence from Chinese firm-level data. Journal of environmental management, 260, 110123.
- Godínez-Domínguez, E. A., Tena-Colunga, A., Pérez-Rocha, L. E., Archundia-Aranda, H. I., Gómez-Bernal, A., Ruiz-Torres, R. P., & Escamilla-Cruz, J. L. (2021). The September 7, 2017 Tehuantepec, Mexico, earthquake: Damage assessment in masonry structures for housing. International journal of disaster risk reduction, 56, 102123.
- Prentice, C., Zeidan, S., & Wang, X. (2020). Personality, trait EI and coping with COVID 19 measures. International Journal of Disaster Risk Reduction, 51, 101789.
- Zhang, Y., Li, X., Jiang, F., Song, Y., & Xu, M. (2020). Industrial policy, energy and environment efficiency: evidence from Chinese firm-level data. Journal of environmental management, 260, 110123.
- Andersen, L. M., & Sugg, M. M. (2019). Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. International journal of disaster risk reduction, 39, 101123.
- Ilbeigi, M. (2019). Statistical process control for analyzing resilience of transportation networks. International journal of disaster risk reduction, 33, 155-161.
- Gupta, T., & Roy, S. (2024, April). Applications of Artificial Intelligence in Disaster Management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
- Yu, M., Yang, C., & Li, Y. (2018). Big data in natural disaster management: a review. Geosciences, 8(5), 165.
- Cecilia, J. M., Cano, J. C., Calafate, C. T., Manzoni, P., Periñán-Pascual, C., Arcas-Túnez, F., & Muñoz-Ortega, A. (2021). WATERSensing: A smart warning system for natural disasters in Spain. IEEE Consumer Electronics Magazine, 10(6), 89-96.
- Sood, S. K., Sandhu, R., Singla, K., & Chang, V. (2018). IoT, big data and HPC based smart flood management framework. Sustainable Computing: Informatics and Systems, 20, 102-117.
- Rajeshkannan, C., & Kogilavani, S. V. (2021). Reconstructing Geographical Flood Probability and Analyzed Inundation Flood Mapping on Social Media Implementation. Stud. Inform. Control, 30(1), 29-38.
- Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
- Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
- Pham, B. T., Luu, C., Van Phong, T., Trinh, P. T., Shirzadi, A., Renoud, S., ... & Clague, J. J. (2021). Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?. Journal of hydrology, 592, 125615.
- Dong, Z., Wang, G., Amankwah, S. O. Y., Wei, X., Hu, Y., & Feng, A. (2021). Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on Sentinel-1 data and multiple convolutional neural networks. International Journal of Applied Earth Observation and Geoinformation, 102, 102400.
- Putri, A. F. S., Widyatmanti, W., & Umarhadi, D. A. (2022). Sentinel-1 and Sentinel-2 data fusion to distinguish building damage level of the 2018 Lombok Earthquake. Remote Sensing Applications: Society and Environment, 26, 100724.
- Chou, J. S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80.
- Haider, T., Barkat, A., Hayat, U., Ali, A., Awais, M., Alam, A., ... & Shah, M. A. (2021). Identification of radon anomalies induced by earthquake activity using intelligent systems. Journal of Geochemical Exploration, 222, 106709.
- Jena, R., Pradhan, B., Gite, S., Alamri, A., & Park, H. J. (2023). A new method to promptly evaluate spatial earthquake probability mapping using an explainable artificial intelligence (XAI) model. Gondwana Research, 123, 54-67.
- Budak, C., & Gider, V. (2023). LSTM based forecasting of the next day’s values of ionospheric total electron content (TEC) as an earthquake precursor signal. Earth Science Informatics, 16(3), 2323-2337.
- Pradhan, B., Dikshit, A., Lee, S., & Kim, H. (2023). An explainable AI (XAI) model for landslide susceptibility modeling. Applied Soft Computing, 142, 110324.
- Al-Najjar, H. A., Pradhan, B., Beydoun, G., Sarkar, R., Park, H. J., & Alamri, A. (2023). A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Research, 123, 107-124.
- Rezaei, M., Moghaddam, M. A., Azizyan, G., & Shamsipour, A. A. (2024). Prediction of agricultural drought index in a hot and dry climate using advanced hybrid machine learning. Ain Shams Engineering Journal, 15(5), 102686.
- Park, E., Jo, H. W., Lee, W. K., Lee, S., Song, C., Lee, H., ... & Kim, T. H. (2022). Development of earth observational diagnostic drought prediction model for regional error calibration: A case study on agricultural drought in Kyrgyzstan. GIScience & Remote Sensing, 59(1), 36-53.
- Saeed, W., & Omlin, C. (2023). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 263, 110273.
- Tareke, K. A., & Awoke, A. G. (2023). Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia. Heliyon, 9(2).
- Kafy, A. A., Bakshi, A., Saha, M., Al Faisal, A., Almulhim, A. I., Rahaman, Z. A., & Mohammad, P. (2023). Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Science of The Total Environment, 867, 161394.
- Hu, P., Tanchak, R., & Wang, Q. (2024). Developing risk assessment framework for wildfire in the United States–A deep learning approach to safety and sustainability. Journal of Safety and Sustainability, 1(1), 26-41.
- Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
- Prentice, C., Zeidan, S., & Wang, X. (2020). Personality, trait EI and coping with COVID 19 measures. International Journal of Disaster Risk Reduction, 51, 101789.
- Sun, Z., Di, L., Cvetojevic, S., & Yu, Z. (2020). GeoFairy2: a cross-institution mobile gateway to location-linked data for in-situ decision making. ISPRS International Journal of Geo-Information, 10(1), 1.
- Yang, H., & Li, Z. (2024). Dynamic graph Convolutional Network-based prediction of the Urban Grid-Level Taxi demand–supply imbalance using GPS trajectories. ISPRS International Journal of Geo-Information, 13(2), 34.
- Bani-Doumi, M., Serrano-Guerrero, J., Chiclana, F., Romero, F. P., & Olivas, J. A. (2024). A picture fuzzy set multi criteria decision-making approach to customize hospital recommendations based on patient feedback. Applied Soft Computing, 153, 111331.
- Kizielewicz, B., & Dobryakova, L. (2023). Stochastic Triangular Fuzzy Number (S-TFN) Normalization: A New Approach for Nonmonotonic Normalization. Procedia Computer Science, 225, 4901-4911.
- Zhang, X., Yan, S., & Liu, X. (2024). Extended cognitive reliability and error analysis method for advanced control rooms of nuclear power plants. Nuclear Engineering and Technology.
|