
تعداد نشریات | 34 |
تعداد شمارهها | 1,320 |
تعداد مقالات | 9,476 |
تعداد مشاهده مقاله | 9,270,860 |
تعداد دریافت فایل اصل مقاله | 5,677,500 |
تخمین موقعیت مسطحاتی حفاریهای زیرزمینی از طریق روش لرزهنگاری | ||
پدافند غیرعامل | ||
دوره 16، شماره 2 - شماره پیاپی 62، تیر 1404، صفحه 1-10 اصل مقاله (2.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
صفا خزایی* 1؛ محمد رضا سیف2 | ||
1دانشیار دانشکده و پژوهشکده پدافند غیرعامل، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
2پژوهشگر، دانشکده عمران، آب و انرژی، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
تاریخ دریافت: 06 تیر 1402، تاریخ بازنگری: 15 مهر 1402، تاریخ پذیرش: 30 آذر 1402 | ||
چکیده | ||
امروزه استفاده از روشهای لرزهنگاری برای تعیین موقعیت چشمههای لرزهای ناشی از انفجارهای بزرگ و بهبود نسبت سیگنال به نوفه مورد توجه قرار گرفته است. بیشتر پژوهشها به بررسی موارد بزرگمقیاس پرداختهاند که در آنها چشمه لرزهای در فاصله زیادی از آرایه لرزهنگاری فرض میشود. در حوزه نظامی، حفاریهای زیرزمینی اغلب بهمنظور ایجاد معبر برای انتقال نیروها و تجهیزات انجام میشوند. بنابراین، میتوان از روشهای لرزهنگاری برای شناسایی موقعیت این حفاریها بهعنوان چشمههای لرزهای استفاده کرد. در این پژوهش، امکان تخمین موقعیت مسطحاتی حفاریهای زیرزمینی با انرژی پایین، که با روشهای متداول لرزهنگاری قابل شناسایی نیستند، بررسی شده است. برای این منظور، ابزاری بر پایه آرایههای مثلثی طراحی و مکانیسمی ساده مبتنی بر تحلیل همبستگی متقابل برای تخمین موقعیت مسطحاتی چشمه پیشنهاد شده و کارایی آن با روشهای موجود مقایسه شده است. از آنجا که سیگنالهای دریافتی به دلیل انرژی پایین چشمه تحت تأثیر نوفههای محلی قرار میگیرند، الگوریتمی برای کاهش نوفه بر پایه شباهت سیگنالهای دریافتی ارائه شده که در مقایسه با روشهای متداول نتایج مطلوبی بهدست میدهد. | ||
کلیدواژهها | ||
لرزهنگاری؛ تخمین موقعیت؛ حفاری زیرزمینی | ||
عنوان مقاله [English] | ||
Estimating the Planar Position of Underground ExcavationsThrough Seismic Method | ||
نویسندگان [English] | ||
S. Khazai1؛ Mohammad Reza Seif2 | ||
1ihu | ||
2IHU | ||
چکیده [English] | ||
Seismic methods have gained significant attention for locating seismic sources caused by large explosions and enhancing the signal-to-noise ratio. Most studies focus on large-scale scenarios where the seismic source is assumed to be far from the seismic array. In military applications, underground excavations are often conducted to create passages for transferring forces and equipment. Hence, seismic methods can be employed to determine the location of such excavations as seismic sources. This study investigates the feasibility of estimating the planar position of low-energy underground excavations, which are not detectable using conventional seismic techniques. To this end, a tool based on triangular seismic arrays is developed, and a simple mechanism utilizing cross-correlation analysis is proposed for estimating the planar position of the source. The efficiency of this method is compared with existing approaches. Since the received signals are significantly affected by local noise due to the low energy of the source, a noise reduction algorithm based on the similarity of received signals is introduced, yielding favorable results compared to conventional methods. | ||
کلیدواژهها [English] | ||
seismology, location estimation, underground excavation | ||
مراجع | ||
[1] E. Husebye and B. Ruud, “Array Seismology—Past, Present and Future Developments,” Observatory Seismology, vol. 2, pp. 123-153, 1989. [2] S. Rost and C. Thomas, “Array seismology: Methods and applications,” Reviews of Geophysics, vol. 40, no. 3, pp. 2-1–2-27, 2002, doi: 10.1029/2000RG000100. [3] H. Harjes and M. Henger, “Array-seismologie,” Zeitschrift für Geophysik, vol. 39, pp. 865–905, 1973. [4] R. Frosch and P. Green, “The concept of a large aperture seismic array,” Proc. Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 290, no. 1422, pp. 368–384, 1966, doi: 10.1098/rspa.1966.0055. [5] J. E. Vidale, D. A. Dodge, and P. S. Earle, “Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering,” Nature, vol. 405, no. 6785, pp. 445–448, 2000, doi: 10.1038/35013009. [6] C. Keen, Y. Montgomery, W. Mowat, J. Mullard, and D. Platt, “British seismometer array recording systems,” Radio and Electronic Engineer, vol. 30, no. 5, pp. 297–306, 1965, doi: 10.1049/ree.1965.0107. [7] M. E. Wysession, K. M. Fischer, T. J. Clarke, G. I. Al-eqabi, P. J. Shore, and M. J. Fouch, “Slicing into the Earth,” Eos, Transactions American Geophysical Union, vol. 77, no. 49, pp. 477–481, 1996, doi: 10.1029/96EO00325. [8] C. F. Romney, “VELA overview: The early years of the seismic research program,” in Proc. VELA Program: Twenty-Five Years of Basic Research, 1985, pp. 38–65. [9] M. L. Moran and D. G. Albert, “Source location and tracking capability of a small seismic array,” DTIC Document, 1996. [10] D. H. Cress, “Seismic methods for locating targets,” DTIC Document, 1976. [11] R. T. Lacoss, “Geometry and patterns of large aperture seismic arrays,” DTIC Document, 1965. [12] موسوی، سید حسین و خزائی، صفا، آشکارسازی تونلهای زیرزمینی با استفاده از روشهای توموگرافی مقاومت ویژة الکتریکی و لرزهنگاری شکستی، فیزیک زمین و فضا، دوره ،42، شماره 3 ، ص606-587، 1395. [13] خلج زاده، محمدحسین و آزادی، محمد، “ارزیابی اثرات حفر تونل بر پاسخ لرزهای سطح زمین با استفاده از روش تفاضل محدود، مهندسی عمران امیرکبیر (امیرکبیر)، دوره 51، شماره 1، ص 99-108، 1398. doi: 10.22060/ceej.2017.12537.5238 [14] نایینی، سید ابوالحسن و محمدی، سعیده، بررسی لرزه ای تاثیر سازههای سطحی و تونل بر پاسخ ساختگاه زمین در محیط های شهری، کنفرانس ملی پژوهشهای نوین در مهندسی عمران ، معماری و مدیریت شهری، 1396. [15] J. Schweitzer, J. Fyen, S. Mykkeltveit, and T. Kværna, “Seismic arrays,” in Proc. IASPEI-New Manual of Seismological Observatory Practice, 2002, pp. 31–32. [16] J. C. Chen, K. Yao, and R. E. Hudson, “Source localization and beamforming,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 30–39, 2002, doi: 10.1109/79.985679. [17] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530, 2005, doi: 10.1137/040616024. [18] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in Proc. Seventh IEEE International Conference on Computer Vision, 1999, pp. 1033–1038, doi: 10.1109/ICCV.1999.790383. [19] S. Sarker, S. Chowdhury, S. Laha, and D. Dey, “Use of non-local means filter to denoise image corrupted by salt and pepper noise,” Signal & Image Processing: An International Journal, vol. 3, no. 2, pp. 223–230, 2012, doi: 10.5121/sipij.2012.3215. [20] B. Bonar and M. Sacchi, “Denoising seismic data using the nonlocal means algorithm,” Geophysics, vol. 77, no. 1, pp. A5–A18, 2012, doi: 10.1190/geo2011-0235.1. [21] A. Ben-Menahem and S. J. Singh, Seismic Waves and Sources. New York, NY, USA: Springer Science & Business Media, 2012, doi: 10.1007/978-1-4612-5856-8. [22] D. H. Clewell and R. F. Simon, “Seismic wave propagation,” Geophysics, vol. 15, no. 1, pp. 50–60, 1950, doi: 10.1190/1.1437573. [23] G. Carter and G. Knapp, “Time delay estimation,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1976, pp. 357–360, doi: 10.1109/ICASSP.1976.1170926. [24] B. Emile, P. Comon, and J. L. Roux, “Estimation of time delays with fewer sensors than sources,” IEEE Transactions on Signal Processing, vol. 46, no. 7, pp. 2012–2015, 1998, doi: 10.1109/78.668802. [25] J. Chen, Y. Huang, and J. Benesty, “Time delay estimation,” in Audio Signal Processing for Next-Generation Multimedia Communication Systems, 2004, pp. 197–227, doi: 10.1007/978-1-4020-7769-2_8. [26] R. Moddemeijer, “An information theoretical delay estimator,” in Proc. Ninth Symposium on Information Theory, 1987, pp. 121–128. [27] C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327, 1976, doi: 10.1109/TASSP.1976.1162830. [28] N. Gulunay, “FXDECON and complex Wiener prediction filter,” in Proc. SEG Annual Meeting, 1986, pp. 279–281, doi: 10.1190/1.1893035. [29] M. Sacchi, “FX singular spectrum analysis,” in Proc. CSPG CSEG CWLS Convention, 2009, pp. 392–395.
| ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 25 |