
تعداد نشریات | 34 |
تعداد شمارهها | 1,306 |
تعداد مقالات | 9,427 |
تعداد مشاهده مقاله | 9,188,645 |
تعداد دریافت فایل اصل مقاله | 5,620,931 |
مدل پیشنهادی بدنه دانش تحول دیجیتال برای بانک مرکزی جمهوری اسلامی ایران | ||
مدیریت راهبردی دانش سازمانی | ||
مقاله 1، دوره 8، شماره 2 - شماره پیاپی 29، تیر 1404، صفحه 11-39 اصل مقاله (1.64 M) | ||
نوع مقاله: مقاله پژوهشی با اصالت | ||
شناسه دیجیتال (DOI): 10.47176/smok.2025.1863 | ||
نویسندگان | ||
سمیرا طهماسبی آشتیانی1؛ محمد حسن زاده* 2؛ عاطفه شریف3؛ مصطفی امینی4 | ||
1دانشجوی دکتری مدیریت اطلاعات و دانش، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران | ||
2استاد گروه علماطلاعات و دانششناسی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران | ||
3استادیار گروه علماطلاعات و دانششناسی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران | ||
4پسادکتری تحول دیجیتال دادهمحور، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران | ||
تاریخ دریافت: 28 دی 1403، تاریخ بازنگری: 20 اسفند 1403، تاریخ پذیرش: 03 تیر 1404 | ||
چکیده | ||
هدف: بدنه دانش توصیف رسمی از حوزههایی است که مجموعه کاملی از نظریهها، روشها، مفاهیم به شیوهای ساختاریافته و فناوریها را شامل میشود. با توجه به اهمیت تحول دیجیتال در بانک مرکزی، این مقاله با هدف طراحی مدل پیشنهادی بدنه دانش تحول دیجیتال برای بانک مرکزی جمهوری اسلامی ایران تدوین شده است. روش پژوهش: پژوهش حاضر از نظر نوع تقسیم بندی پژوهشهای علمی در رده پژوهش های کاربردی – توسعهای قرار دارد. برای غربالگری و حصول اطمینان از اهمیت شاخصهای شناسایی شده و انتخاب شاخصهای نهایی از دیدگاه خبرگان از روش دلفی استفاده شده است. روش انتخاب نمونه، هدفمند و در دسترس بوده است. مولفهها و شاخصهای منتخب با بهکارگیری نرمافزار مکس کیودا نسخه 20 کدگذاری شد. در مرحله دوم پژوهش یعنی مرحله کمی، پرسشنامه در بین 159 نفر از مدیران و کارشناسان بانک مرکزی توزیع شد. پس از توزیع و جمعآوری دادههای حاصل از پرسشنامه، از تحلیل عاملی تاییدی به کمک نرمافزار Smart PLSبرای برآورد پارامترها و کلیه محاسبات استفاده شد. پس از انجام روایی محتوای شاخصهای طراحی شده، روایی سازه بررسی شد. برای تعیین روایی سازه از تحلیل عاملی تاییدی استفاده شد که به عنوان زیرشاخهای از مدلسازی معادلات ساختاری است. برای تعیین پایایی از ضریب آلفای کرونباخ استفاده شد. یافتهها: با مشخص شدن حوزههای دانشی و نتایج کدگذاری 14 مولفه و 51 شاخص در حوزه تحول دیجیتال نشان داد شاخص هوشمندسازی فرایندهای جمعآوری، تحلیل دادهها و شاخصهای عملکردی با میانگین 4.93 به عنوان مهمترین شاخص در بانک مرکزی شناسایی شد. نتایج ناشی از بخش کمّی پژوهش، نشان دهنده صحت و تائید روابط طراحی شده است. در مجموع، حوزههای " نظام فناوریهای نوین" و "نظام عملیات پولی و اعتباری" بهعنوان کلیدیترین عوامل در پیشبرد تحول دیجیتال بانک مرکزی شناسایی شدند. در مقابل، حوزههایی مانند " نظام تولید کاغذ اسناد بهادار" و " نظامهای پرداخت" با تأثیر کمتر، نیازمند توجه ویژه و سرمایهگذاری بیشتری برای ارتقای نقش خود در این مدل هستند. ضریب مسیر به عنوان معیاری از شدت تأثیر، نشان میدهد که "تحول حوزه نظام فناوریهای نوین بانک مرکزی" با ضریب 0.159 بالاترین تأثیر را بر مدل تحول دیجیتال دارد. این نشاندهنده نقش کلیدی این حوزه در توسعه تحول دیجیتال است. انحراف استاندارد برای تمامی روابط پایین و در بازه 0.003 تا 0.015 است که نشاندهنده دقت بالا در اندازهگیریها و پایداری نتایج شده است. نتیجهگیری: مدل مفهومی پژوهش حاصل از بدنه دانش تحول دیجیتال در بانک مرکزی با تفسیر و ترکیب یافتهها طراحی شد. نتایج نشان میدهد که تمامی روابط بین حوزهها و مدل تحول دیجیتال معنادار هستند. انحراف استاندارد برای تمامی روابط پایین و در بازه 0.003 تا 0.015 است که نشاندهنده دقت بالا در اندازهگیریها و پایداری نتایج است. این موضوع به اطمینان از نتایج ارائه شده کمک میکند. آماره تی نیز در تمام روابط بالاتر از 5.0 است، که حاکی از معناداری قوی روابط است. در مجموع، حوزههای "تحول نظام فناوریهای نوین" و "تحول نظام عملیات پولی و اعتباری" بهعنوان کلیدیترین عوامل در پیشبرد تحول دیجیتال بانک مرکزی شناسایی میشوند. اصالت/ارزش: با تغییرات سریع فناوریهای جدید، نقش بانک مرکزی در جایگزینی روشهای سنتی ارائه خدمات با روشهای جدید بسیار مهم است. | ||
کلیدواژهها | ||
بدنه دانش؛ بانک مرکزی جمهوری اسلامی ایران؛ تحول دیجیتال؛ دانش؛ مدل بدنه دانش | ||
عنوان مقاله [English] | ||
The proposed model of the body of knowledge of digital transformation for the Central Bank of the Islamic Republic of Iran | ||
نویسندگان [English] | ||
Samira Tahmasebi Ashtiani1؛ Mohammad Hasanzadeh2؛ Atefeh Sharif3؛ Mostafa Amini4 | ||
1PhD student in Information and Knowledge Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran | ||
2Professor, Department of Information Science and Knowledge, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran | ||
3Assistant Professor, Department of Information Science and Knowledge, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran | ||
4Postdoctoral Fellow in Data-Driven Digital Transformation, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran | ||
چکیده [English] | ||
Purpose: A body of knowledge is a formal description of a field that includes a complete set of theories, methods, concepts in a structured way, and technologies. If we consider knowledge alone as the factor of individual superiority, the flow of knowledge is the factor of group superiority. Knowledge flow is considered as one of the important paths of action for digital transformation. The central bank has always tried to use different methods and tools in order to continuously improve and upgrade its performance level. It is very important to use transformative tools in order to respond to changing environmental conditions and customer expectations. Considering the rapid changes of new technologies, the role of the central bank in replacing the traditional and conventional methods of providing services with new methods with the help of new technologies is very important. Therefore, digital transformation is a change from thinking to action, centered on transformative technologies. Digital transformation in the central bank makes it easier, faster and cheaper to provide services to customers. Also make it agile, smart and flexible with innovative services. Considering the importance of digital transformation in the central bank, this article was compiled with the aim of the proposed model of the body of knowledge of digital transformation for the Central Bank of the Islamic Republic of Iran. Methodology: In terms of the division of scientific research, the current research is in the category of applied-developmental research. The purpose of modeling is to provide a clear and comprehensive picture of the body of knowledge of the central bank's digital transformation, which helps to solve the problem of determining the status of the organization's current capabilities and extracting its measurement metrics. Therefore, it is considered an applied research.On the other hand, considering the increase in knowledge resulting from the design of the model and examining the effects of variables affecting it, the research also has a developmental orientation. The Delphi method has been used to screen and ensure the importance of the identified indicators and to select the final indicators from the point of view of experts. The opinion of experts about the importance of each of the indicators has been collected in the form of a 5-point Likert spectrum in the form of a questionnaire.The components and indicators were sent to the expert group in the form of a questionnaire. The sample selection method was purposeful and available. 15 people were selected to be a member of the expert panel from experts, managers, researchers and faculty members of universities. In the first stage of the research, the components and indicators of the body of knowledge of digital transformation were finalized by obtaining content validity and experts' opinions. Kendall's correlation coefficient was used to measure the level of consensus among panel members. The decision criterion is to achieve a strong consensus among the panel members, which is calculated based on Kendall's coefficient. After the second round of Delphi, Kendall's coordination coefficient was calculated in order to re-examine the degree of coordination of the Delphi panel about research factors and indicators, and the total coefficient was 0.81, which indicates a strong consensus among the members. Selected components and indicators were coded using MAXQDA software. In the second stage of the research, which is the quantitative stage, the researcher-made questionnaire was validated. For this purpose, the questionnaire was distributed among 159 managers and experts of Central Bank based on the classification of specified knowledge areas. After distributing and collecting the data from the questionnaire, confirmatory factor analysis was used with the help of SMART PLS software to estimate the parameters and all calculations. After conducting the content validity of the designed indicators in the next step, the construct validity was checked. To determine construct validity, confirmatory factor analysis was used, which is a sub-branch of structural equation modeling, a method for examining construct validity in studies where the measured indicators are a questionnaire with quantitative and qualitative items. Cronbach's alpha coefficient was used to determine reliability. Also, the indicators of path coefficient, standard deviation, t-statistic and probability value have been determined to examine the intensity and significance of the relationship between different knowledge areas of transformation in the central bank. Findings: By identifying the knowledge areas and coding results, it showed 14 components and 51 indicators in the field of digital transformation Intelligence indicators of collection processes, statistical data analysis and performance indicators with an average of 4.93, were identified as the most important indicators in the central bank. The results of the quantitative part of the research show the correctness and confirmation of the designed relationships. In total, the areas of "new technology system" and "money and credit operation system" were identified as the most key factors in advancing the digital transformation of the central bank. On the other hand, areas such as "securities paper production system" and "payment systems" with less impact, need special attention and more investment to improve their role in this model. The high accuracy of the results and strong significance make this analysis a valid tool for improving digital transformation programs. The conceptual model of the research obtained from the body of knowledge of digital transformation in the central bank was designed by interpreting and combining the findings. The results show that all relationships between domains and digital transformation model are significant. The path coefficient, as a measure of the intensity of the effect, shows that the "development of the central bank's new technologies system" has the highest effect on the digital transformation model with a coefficient of 0.159.This shows the key role of this field in the development of digital transformation. The standard deviation for all relationships is low and in the range of 0.003 to 0.015, which indicates high accuracy in measurements and stability of results. Research limitations/implications: This study's limitations included Experts' different definition of digital transformation & The dispersion of knowledge fields in different buildings of the Central Bank can be mentioned. Access to up-to-date and accurate data is one of the limitations due to the confidentiality levels of information in the central bank. Originality/value: With the rapid changes of new technologies, the role of the central bank in replacing the traditional methods of providing services with new methods is very important. | ||
کلیدواژهها [English] | ||
Body of knowledge, Body of knowledge model, Central Bank of the Islamic Republic of Iran, digital transformation, knowledge | ||
مراجع | ||
Abdullahikia, M. R. (2021). Digital transformation in entrepreneurship and the future evolution of the banking industry (a case study of National Bank of Iran). The 5th International Conference on Global Studies in Humanities, Management and Entrepreneurship. 1-15. (In Persian) Alkhwaldi, A.F., & Aldhmour, F.M. (2023) Beyond the Bitcoin:Analysis of Challenges to Implement Blockchain in the Jordanian Public Sector, in Convergence of Internet of Things and Blockchain Technologies. 1st ed. H. L. Gururaj,V. Ravi Kumar, S. Goundar, A. Elngar, B. H. Swathi, Ed. Springer, Cham, 207-220. https://doi.org/10.1007/978-3-030-76216-2_13 Attaran, M., Attaran, S., & Kirkland, D. (2019). The Need for Digital Workplace: Increasing Workforce Productivity in the Information Age. International Journal of Enterprise Information Systems (IJEIS). 15(1):1-23. https://doi.org/10.4018/IJEIS.2019010101 Azadi, N., Jafari, M., & Hadian, I. (2022). Investigating the spillover of the European Central Bank's monetary policy on Iran's macroeconomic variables: a structural approach. Economy and modeling. 4 (12): 75-110. https://doi.org/10.29252/jem.2022.226179.1732 (In Persian) Bashokouh Ajirlo, M., & Ghasemi Hamedani, I. (2023). The role of personal skills and entrepreneurship to transform from hybrid entrepreneurship to full-time entrepreneurship with emphasis on experiential learning theory. 10 (2): 57-76. HTTPS://DOI.ORG/10.22069/jead.2023.20505.1631. https://doi.org/10.22069/jead.2023.20505.1631 (In Persian) Bani Saeed, E., Zaranjad, M., & Anwari, I. (2023). Analyzing the effects of conventional and unconventional monetary policies on economic growth in uncertain conditions using the stochastic general equilibrium method. Stable economy. 4 (1): 1-25. (In Persian) Ejiga, H., Okeke, D. (2024). Digital transformation as a catalyst for business model innovation: A critical review of impact and implementation strategies. 10(02), 256–264. https://doi.org/10.30574/msarr.2024.10.2.0066 Chen, P., & Kim, S. (2023). The impact of digital transformation on innovation performance - The mediating role of innovation factors. Heliyon. 9: 1-11. https://doi.org/10.1016/j.heliyon.2023.e13916 Habibollah Mirghafoori, H., Aghazade Bafgh, M., & Saffari Darberazi, A. (2024).Designing a cognitive model of retaining knowledge workers in technological and knowledge-based companies of Yazd Science and Technology Park. Strategic Management of Organizational Knowledge, 7 (3), 29-54. https://doi.org/10.47176/SMOK.2024.1779 (In Persian) Haddadi, H., & etal. )2024). Paradigm model of innovation strategy with digital transformation approach in banking industry: Foundation data theory. Change management research paper. https://doi.org/10.22067/tmj.2024.86723.1549 (In Persian) Haffar, M., & etal. (2017).Organisational culture and TQM implementation: investigating the mediating influences of multidimensional employee readiness for change. Total Quality Management & Business Excellence. pp. 1-22. https://doi.org/10.1080/14783363.2017.1369352 Hamdi Wiraputra, R., & Noviaristanti, S. (2022). Digital Transformation Challenge in Bank Rakyat Indonesia Regional Office Denpasar. E-Proceeding of Management. 8 (6): 3233-3236. Heavin, C., & Power, D. J. (2018). Challenges for digital transformation–towards a conceptual decision support guide for managers. Journal of Decision Systems, 27(sup1), 38-45. https://doi.org/10.1080/12460125.2018.1468697 Hoque, A., Thuy Le b, Duong., & Le, Thi. (2024). Does digital transformation reduce bank’s risk-taking? evidence from vietnamese commercial banks. Journal of Open Innovation: Technology, Market, and Complexity. 10(2):1-10. https://doi.org/10.1016/j.joitmc.2024.100260 Imgrund, F., Fischer, M., Janiesch, C., & Winkelmann, A. (2018). Approaching digitalization with business process management. Proceedings of the MKWI. 1725-1736. Ismail, M. H., Khater, M., & Zaki, M. (2017). Digital business transformation and strategy: What do we know so far?. Cambridge Service Alliance, 10. Junça Silva, A., & Dias, H. (2023), "The relationship between employer branding, corporate reputation and intention to apply to a job offer", International Journal of Organizational Analysis. 31 (8): 1-16. https://doi.org/10.1108/IJOA-01-2022-3129 Kammerpur, S. (2021). Digital transformation and digital banking in the banking industry. The 8th international conference on modern techniques of management, accounting, economics and banking. 1-16. (In Persian) Karimi,M., Mousavi,N., Vahdati,H & Reza Sepahvand. (2024). Market-oriented knowledge management program in production cooperatives; Identifying key success factors and consequences of implementation with FCM method (Case Study: production cooperatives), 7 (3), 11-20. https://doi.org/10.47176/SMOK.2024.1776 (In Persian) Khamse, A., Mamoodi.A., & Hosseini.M. (2022). The innovative model of social banking based on digital transformation in Iran's banking industry. Change management research paper. 28: 125-149. https://doi.org/10.22067/tmj.2023.79121.1358 (In Persian) Koc, T., Kurt, K., & Akbiyik, A. (2019). A Brief Summary of Knowledge Management Domain:10-Year History of the Journal of Knowledge Management. Rocedia Computer Science158, 891–898. https://doi.org/10.1016/j.procs.2019.09.128 Lang, D., & Rumsey, C. (2018). Business Disruption is here to Stay–what should Leaders Do? Employee Experience–an Answer to the Deficit of Talents, in the fourth Industrial Revolution. 11th IBAB International Conference. 19, 35. Loonam, J., & etal (2018). “Towards digital transformation: Lessons learned from traditional organizations”, Strategic Change, Vol. 27(2): 101- 109. https://doi.org/10.1002/jsc.2185 Mazhari, M., & Rajabi Alavi, H. (2024). Approaches to supervision of banks and credit institutions. New achievements in public law. 11: 36 - 55. https://doi.org/10.30495/DPI.1403.1119627 (In Persian) Mergel, I., Edelmann, N., & Haug, N. (2019). Defining digital transformation: Results from expert interviews. Government Information Quarterly, 36(4), 101385. https://doi.org/10.1016/j.giq.2019.06.002 Mirghafoori,H., Aghazade Bafgh,M & Saffari Darberazi, A. (2024). The effect of synergistic leadership behaviours on the knowledge hiding of Kashan teachers: the mediating role of the professional learning community and organisational voice. Strategic Management of Organizational Knowledge, 7 (3), 11-20. https://doi.org/10.47176/smok.2024.1779 (In Persian) Mikaili, A., & Nabipour Afrozi, M. (2023). Investigating the impact of financial technology on improving the efficiency and effectiveness of banks. Humanities and Islamic sciences in the third millennium. 7(3): 53-71. (In Persian) Náñez Alonso, S., Jorge-Vazquez, J., & Reier Forradellas, R. (2021). Central Banks Digital Currency: Detection of Optimal Countries for the Implementation of a CBDC and the Implication for Payment Industry Open Innovation. Open Innov. Technol. Mark. 7(72): 1-21. https://doi.org/10.3390/joitmc7010072 Nafarli, S., & Abbasi, E. (2023). Identifying the Weaknesses and Strengths of the Performance of Neobanks in Iran (Case Study, Bluebank, Bankino and Qarz al-Hasneh Resalat). 2 (1):1-17. http://doi.org/10.61838/dmbaj.2.1.1 (In Persian) Noami, A., & Farid, N. (2017). The impact of customers' experience of digital transformation in the banking industry and its financial performance with the mediating role of customer satisfaction and loyalty (case study: Bank Mellat). Journal of management and entrepreneurship studies. 4 (3): 93-112. (In Persian) Nurjanah, S., Shalshabilla, V., & Widya Wulan, A. (2024). Digital Transformation In The Banking Industry Challenges And Opportunities. 1(1): 64-71. retrieved from https://ijame.id Pemsel, S., Müller, R., & Söderlund. J. )2016(. Knowledge governance strategies in project-based organizations. Long Range Planning 49(6): 648-660. https://doi.org/10.1016/j.lrp.2016.01.001 Philsoophian, M., Akhavan, P., & Namvar, M. (2021), “The mediating role of blockchain technology in improvement of knowledge sharing for supply chain management”, Management Decision. 60 (3): 784-805. https://doi.org/10.1108/md-08-2020-1122 (In Persian) Romer, D. (2019). Advanced Macroeconomics Fifth Edition. Berkeley. McGraw Hill Education Endogenous technological change. Journal of Political Economy, 98: 71-102. https://doi.org/10.1086/261725 Salamzadeh, A., Tajpour, M., Hosseini, E., & Brahmi, M. S. (2023). Human capital and the performance of Iranian Digital Startups: The moderating role of knowledge sharing behaviour. International Journal of Public Sector Performance Management, 12(1-2), 171- 186. (In Persian) Siah Sarani Kajouri, M.A & Chirag Ali, M.R (2024). Application of clustering technique in analyzing the situation of knowledge management in Golestan University, 7(24), 165–187. Shrivas, K. (2020). Study on Digital Transformation of Banking in India. Journal of Composition Theory (JCT). 7 (7): 1-7. https://doi.org/20.18001.ajct.2020.v13i7.20.100141 Soleimani, E., & Maleki, A (2019). Challenges and obstacles of implementing knowledge management in the armed forces and providing a solution. Contemporary researches in management and accounting sciences. 2 (4), 1-18. retrieved from https://jocrimas.ir/showpaper/288922 (In Persian) Stelmaszczuk-Górska, M. A., & etal (2020). Body Of Knowledge For The Earth Observation And Geoinformation Sector – A Basis For Innovative Skills Development. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 43: 15-22. https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-15-2020 Stich, V., Gudergan, G., & Zeller, V. (2018). Need and solution to transform the manufacturing industry in the age of Industry 4.0–a capability maturity index approach. Working Conference on Virtual Enterprises.33-42. https://doi.org/10.1007/978-3-319-99127-6_3. Tolboom, I. H. (2016). The impact of digital transformation. (Masters thesis, Delft University of Technology, Faculty of Technology, Policy and Management) retrieved from https://resolver.tudelft.nl/uuid:d1d6f874-abc1-4977-8d4e-4b98d3db8265 Vahidi, H., & Danesh, Z., & Shahbazi, S. (2024). Mental patterns of knowledge sharing in generation Z employees in a defense training-research center, Strategic Management of Organizational Knowledge. 7(25): 43–74. https://doi.org/ 20.1001.1.26454262.1403.7.2.2.2 (In Persian) Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems. 28(2), 118-144. https://doi.org/10.1016/j.jsis.2019.01.003 Wen, H., Zhong, Q., & Lee, C. (2022). Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. International Review of Financial Analysis, 82. https://doi.org/10.1016/j.irfa.2022.102166 | ||
آمار تعداد مشاهده مقاله: 72 تعداد دریافت فایل اصل مقاله: 51 |