
تعداد نشریات | 34 |
تعداد شمارهها | 1,338 |
تعداد مقالات | 9,662 |
تعداد مشاهده مقاله | 9,925,210 |
تعداد دریافت فایل اصل مقاله | 6,114,684 |
مدل طبقهبندی ترافیک شبکههای کامپیوتری مبتنی بر خوشهبندی DBScan و طبقهبند گاما | ||
پدافند الکترونیکی و سایبری | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 مهر 1404 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سیده زهره مجیدیان1؛ شیوا تقی پور عیوضی* 2؛ بهمن آراسته3؛ علی غفاری4 | ||
1دانشجوی دکتری، گروه مهندسی کامپیوتر، واحد بین المللی ارس، دانشگاه آزاد اسلامی، تبریز، ایران | ||
2استادیار، گروه مهندسی کامپیوتر، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران | ||
3دانشیار، گروه مهندسی کامپیوتر، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران | ||
4دانشیار،گروه مهندسی کامپیوتر، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران | ||
تاریخ دریافت: 18 خرداد 1404، تاریخ بازنگری: 18 مرداد 1404، تاریخ پذیرش: 19 شهریور 1404 | ||
چکیده | ||
طبقهبندی ترافیک یکی از مهمترین فرآیندهای نظارت بر شبکه است که کاربردهای گستردهای در حوزههای امنیت، کیفیت خدمات و مدیریت شبکه دارد. با افزایش پیچیدگی و تنوع ترافیک شبکه، چالشهای جدیدی از جمله کمبود دادههای آموزشی برچسبگذاریشده بوجود میآید. به منظور رفع این چالش در این مقاله، سازوکار طبقهبندی ترافیک با ترکیب الگوریتمهای یادگیری ماشین بدون نظارت و نیمه نظارتی ارائه میشود. این سازوکار از مجموعه محدودی از دادههای آموزشی برچسبگذاریشده برای بهبود دقت طبقهبندی استفاده میکند. روش پیشنهادی، هر جریان ترافیک را به عنوان یک بردار ویژگی توصیف میکند که شامل ویژگیهای آماری آن جریان است. تعداد ویژگیهای ایجاد شده برای هر نمونه نیز با استفاده از تحلیل مولفههای اصلی کاهش مییابد. خوشهبندی DBScan برای تعیین نوع ترافیک صحیح برای هر جریان ترافیک بدون برچسب استفاده میشود. در نهایت، از مدل طبقهبند گاما برای تفکیک جریانهای ترافیک جدید استفاده میشود. کارایی روش پیشنهادی با استفاده از مجموعه دادههای واقعی ارزیابی شده است. نتایج نشان میدهد که روش پیشنهادی قادر به طبقهبندی جریانهای ترافیکی با دقت متوسط 95.12 درصد است که حداقل 7.03 درصد بهبود را نسبت به رویکردهای قبلی نشان میدهد. کلید واژهها: طبقه بندی ترافیک، یادگیری ماشین، خوشه بندی DBScan، طبقهبند گاما. | ||
کلیدواژهها | ||
طبقه بندی ترافیک؛ یادگیری ماشین؛ خوشه بندی DBScan؛ طبقهبند گاما | ||
موضوعات | ||
امنیت اطلاعات، رمزنگاری، پنهان نگاری، پروتکل ها و استانداردها | ||
عنوان مقاله [English] | ||
Computer NetworksTraffic Classification Model Based on DBScan Clustering and Gamma Classification | ||
نویسندگان [English] | ||
Seyede Zohreh Majidian1؛ Shiva TaghipourEivazi2؛ Bahman Arasteh3؛ Ali Ghaffari4 | ||
1PhD student. Department of Computer Engineering, Aras international Branch, Islamic Azad University, Tabriz, Iran | ||
2assistant professor. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
3Associate Professor. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
4Associate Professor . Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
چکیده [English] | ||
Traffic classification is one of the most important network monitoring processes that has wide applications in the fields of security, quality of service, and network management. With the increasing complexity and variety of network traffic, new challenges arise, including the lack of labeled training data. In order to solve this challenge, in this paper, a traffic classification mechanism is presented by combining unsupervised and semi-supervised machine learning algorithms. This mechanism uses a limited set of labeled training data to improve classification accuracy. The proposed method describes each traffic flow as a feature vector that contains the statistical characteristics of that flow. The number of features generated for each sample is reduced using principal component analysis. DBScan clustering is used to determine the correct traffic type for each untagged traffic stream. Finally, the gamma classifier model is used to separate the new traffic flows. The efficiency of the proposed method has been evaluated using real data sets. The results show that the proposed method is able to classify traffic flows with an average accuracy of 95.12%, which shows at least 7.03% improvement over previous approaches. | ||
کلیدواژهها [English] | ||
Traffic classification, Machine learning, DBScan clustering, Gamma classification | ||
مراجع | ||
[1] B. Sharma, L. Sharma, C. Lal, and S. Roy, "Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach," Expert Systems with Applications, vol. 238, p. 121751, 2024. [2] B. Sharma, L. Sharma, C. Lal, and S. Roy, "Anomaly based network intrusion detection for IoT attacks using deep learning technique," Computers and Electrical Engineering, vol. 107, p. 108626, 2023. [3] M. J. Idrissi, H. Alami, A. El Mahdaouy, A. El Mekki, S. Oualil, Z. Yartaoui, et al., "Fed-anids: Federated learning for anomaly-based network intrusion detection systems," Expert Systems with Applications, vol. 234, p. 121000, 2023. [4] A. S. Dina, A. Siddique, and D. Manivannan, "A deep learning approach for intrusion detection in Internet of Things using focal loss function," Internet of Things, vol. 22, p. 100699, 2023. [5] S. A. Khanday, H. Fatima, and N. Rakesh, "Implementation of intrusion detection model for DDoS attacks in Lightweight IoT Networks," Expert Systems with Applications, vol. 215, p. 119330, 2023. [6] S. Khan and A. B. Mailewa, "Discover botnets in IoT sensor networks: A lightweight deep learning framework with hybrid self-organizing maps," Microprocessors and Microsystems, vol. 97, p. 104753, 2023. [7] S. M. Kasongo, "A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework," Computer Communications, vol. 199, pp. 113-125, 2023. [8] H. Asgharzadeh, A. Ghaffari, M. Masdari, and F. S. Gharehchopogh, "Anomaly-based intrusion detection system in the Internet of Things using a convolutional neural network and multi-objective enhanced Capuchin Search Algorithm," Journal of Parallel and Distributed Computing, vol. 175, pp. 1-21, 2023. [9] S. Wang, W. Xu, and Y. Liu, "Res-TranBiLSTM: An intelligent approach for intrusion detection in the Internet of Things," Computer Networks, vol. 235, p. 109982, 2023. [10] R. Lazzarini, H. Tianfield, and V. Charissis, "A stacking ensemble of deep learning models for IoT intrusion detection," Knowledge-Based Systems, vol. 279, p. 110941, 2023. [11] H. Asgharzadeh, A. Ghaffari, M. Masdari, and F. S. Gharehchopogh, "An Intrusion Detection System on The Internet of Things Using Deep Learning and Multi-objective Enhanced Gorilla Troops Optimizer," Journal of Bionic Engineering, 2024/07/09 2024. [12] !!! INVALID CITATION !!! [Khojand, 2024 #69]. [13] V. Hosseini, Y. Farhang, K. Majidzadeh, and C. Ghobadi, "Customized mutated PSO algorithm of isolation enhancement for printed MIMO antenna with ISM band applications," AEU-International Journal of Electronics and Communications, vol. 145, p. 154067, 2022. [14] S. H. S. Ebrahimi, K. Majidzadeh, and F. S. Gharehchopogh, "A principal label space transformation and ridge regression-based hybrid gorilla troops optimization and jellyfish search algorithm for multi-label classification," Cluster Computing, pp. 1-45, 2024. [15] H. Tanha and M. Abbasi, "Identify malicious traffic on IoT infrastructure using neural networks and deep learning," Electronic and Cyber Defense, vol. 11, pp. 1-13, 2023. [16] J. Mazloum and H. Bigdeli, "An Optimized Compound Deep Neural Network Integrating With Feature Selection for Intrusion Detection System in Cyber Attacks," Electronic and Cyber Defense, vol. 10, pp. 41-51, 2023. [17] A. Karimi, M. Irajimoghaddam, and E. Bastami, "Feature selection using combination of genetic-whale-ant colony algorithms for software fault prediction by machine learning," Electr Cyber Defense, vol. 10, 2022. [18] H. Alazzam, A. Sharieh, and K. E. Sabri, "A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer," Expert systems with applications, vol. 148, p. 113249, 2020. [19] M. H. Aghdam and P. Kabiri, "Feature selection for intrusion detection system using ant colony optimization," Int. J. Netw. Secur., vol. 18, pp. 420-432, 2016. [20] W. Ghanem and A. Jantan, "Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intrusion detection," Int. J. Adv. Soft Comput. Appl, vol. 8, pp. 70-81, 2016. [21] N. Farnaaz and M. Jabbar, "Random forest modeling for network intrusion detection system," Procedia Computer Science, vol. 89, pp. 213-217, 2016. [22] N. Acharya and S. Singh, "An IWD-based feature selection method for intrusion detection system," Soft Computing, vol. 22, pp. 4407-4416, 2018. [23] B. Selvakumar and K. Muneeswaran, "Firefly algorithm based feature selection for network intrusion detection," Computers & Security, vol. 81, pp. 148-155, 2019. [24] Q. M. Alzubi, M. Anbar, Z. N. Alqattan, M. A. Al-Betar, and R. Abdullah, "Intrusion detection system based on a modified binary grey wolf optimisation," Neural computing and applications, vol. 32, pp. 6125-6137, 2020. [25] O. A. Alghanam, W. Almobaideen, M. Saadeh, and O. Adwan, "An improved PIO feature selection algorithm for IoT network intrusion detection system based on ensemble learning," Expert Systems with Applications, vol. 213, p. 118745, 2023. [26] N. Kunhare, R. Tiwari, and J. Dhar, "Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm," Computers and Electrical Engineering, vol. 103, p. 108383, 2022. [27] S. V. Pingale and S. R. Sutar, "Remora whale optimization-based hybrid deep learning for network intrusion detection using CNN features," Expert Systems with Applications, vol. 210, p. 118476, 2022. [28] P. K. Keserwani, M. C. Govil, E. S. Pilli, and P. Govil, "A smart anomaly-based intrusion detection system for the Internet of Things (IoT) network using GWO–PSO–RF model," Journal of Reliable Intelligent Environments, vol. 7, pp. 3-21, 2021. [29] W. Elmasry, A. Akbulut, and A. H. Zaim, "Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic," Computer Networks, vol. 168, p. 107042, 2020. [30] A. Syarif and W. Gata, "Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm. 11 th Int Conf on Information & Communication Technology and System," ed, 2017. [31] K. Anusha and E. Sathiyamoorthy, "A decision tree-based rule formation with combined PSO-GA algorithm for intrusion detection system," International Journal of Internet Technology and Secured Transactions, vol. 6, pp. 186-202, 2016. [32] S. M. H. Bamakan, H. Wang, T. Yingjie, and Y. Shi, "An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization," Neurocomputing, vol. 199, pp. 90-102, 2016. [33] Z. Wang, M. Tang, J. Deng, Y. Wang, J. Qian, and X. Chen, "A new feature selection method for intrusion detection," in 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), 2019, pp. 298-304. [34] I. Syarif, R. F. Afandi, and F. A. Saputra, "Feature selection algorithm for intrusion detection using cuckoo search algorithm," in 2020 International Electronics Symposium (IES), 2020, pp. 430-435. [35] E. Roopa Devi and R. Suganthe, "Enhanced transductive support vector machine classification with grey wolf optimizer cuckoo search optimization for intrusion detection system," Concurrency and Computation: Practice and Experience, vol. 32, p. e4999, 2020. [36] S. Sarvari, N. F. M. Sani, Z. M. Hanapi, and M. T. Abdullah, "An efficient anomaly intrusion detection method with feature selection and evolutionary neural network," IEEE Access, vol. 8, pp. 70651-70663, 2020. [37] T. Gu, H. Chen, L. Chang, and L. Li, "Intrusion detection system based on improved abc algorithm with tabu search," IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, pp. 1652-1660, 2019. [38] L. Li, S. Zhang, Y. Zhang, L. Chang, and T. Gu, "The intrusion detection model based on parallel multi-artificial bee colony and support vector machine," in 2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI), 2019, pp. 308-313. [39] M. Mazini, B. Shirazi, and I. Mahdavi, "Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms," Journal of King Saud University-Computer and Information Sciences, vol. 31, pp. 541-553, 2019. [40] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, "BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset," IEEE Access, vol. 8, pp. 29575-29585, 2020. [41] G. M. Suresh and M. L. Madhavu, "AI based intrusion detection system using self-adaptive energy efficient BAT algorithm for software defined IoT networks," in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020, pp. 1-6. [42] M. Safaldin, M. Otair, and L. Abualigah, "Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks," Journal of ambient intelligence and humanized computing, vol. 12, pp. 1559-1576, 2021. [43] P. K. Keserwani, M. C. Govil, and E. S. Pilli, "An optimal intrusion detection system using GWO-CSA-DSAE model," Cyber-Physical Systems, vol. 7, pp. 197-220, 2021. [44] T. A. Alamiedy, M. Anbar, Z. N. Alqattan, and Q. M. Alzubi, "Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm," Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 3735-3756, 2020. [45] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour, "Cyber intrusion detection by combined feature selection algorithm," Journal of information security and applications, vol. 44, pp. 80-88, 2019. [46] S. Dwivedi, M. Vardhan, and S. Tripathi, "Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection," Cluster Computing, pp. 1-20, 2021. [47] N. O. Aljehane, H. A. Mengash, M. M. Eltahir, F. A. Alotaibi, S. S. Aljameel, A. Yafoz, et al., "Golden jackal optimization algorithm with deep learning assisted intrusion detection system for network security," Alexandria Engineering Journal, vol. 86, pp. 415-424, 2024. [48] P. Zhou, H. Zhang, and W. Liang, "Research on hybrid intrusion detection based on improved Harris Hawk optimization algorithm," Connection Science, vol. 35, p. 2195595, 2023. [49] O. Pandithurai, C. Venkataiah, S. Tiwari, and N. Ramanjaneyulu, "DDoS attack prediction using a honey badger optimization algorithm based feature selection and Bi-LSTM in cloud environment," Expert Systems with Applications, vol. 241, p. 122544, 2024. [50] Z. Ye, J. Luo, W. Zhou, M. Wang, and Q. He, "An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection," Future Generation Computer Systems, vol. 151, pp. 124-136, 2024. [51] M. Sharma and P. Kaur, "A comprehensive analysis of nature-inspired meta-heuristic techniques for feature selection problem," Archives of Computational Methods in Engineering, vol. 28, pp. 1103-1127, 2021. [52] A. Shaddeli, F. S. Gharehchopogh, M. Masdari, and V. Solouk, "BFRA: a new binary hyper-heuristics feature ranks algorithm for feature selection in high-dimensional classification data," International Journal of Information Technology & Decision Making, vol. 22, pp. 471-536, 2023. [53] M. Khishe and M. R. Mosavi, "Chimp optimization algorithm," Expert systems with applications, vol. 149, p. 113338, 2020. [54] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, "Building an efficient intrusion detection system based on feature selection and ensemble classifier," Computer networks, vol. 174, p. 107247, 2020. [55] J. Too, A. R. Abdullah, and N. Mohd Saad, "A new quadratic binary harris hawk optimization for feature selection," Electronics, vol. 8, p. 1130, 2019. [56] P. Diaz and M. J. E. Jiju, "A comparative analysis of meta-heuristic optimization algorithms for feature selection and feature weighting in neural networks," Evolutionary Intelligence, vol. 15, pp. 2631-2650, 2022. | ||
آمار تعداد مشاهده مقاله: 171 تعداد دریافت فایل اصل مقاله: 8 |