
تعداد نشریات | 33 |
تعداد شمارهها | 1,334 |
تعداد مقالات | 9,641 |
تعداد مشاهده مقاله | 9,834,019 |
تعداد دریافت فایل اصل مقاله | 6,048,775 |
نقش هوش مصنوعی در ارتقای دانش مدیریت منابع انسانی مثبتگرا: یک مدل علّی | ||
مدیریت راهبردی دانش سازمانی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 07 مهر 1404 اصل مقاله (1.59 M) | ||
نوع مقاله: مقاله پژوهشی با اصالت | ||
شناسه دیجیتال (DOI): 10.47176/smok.2025.1891 | ||
نویسندگان | ||
میناسادات موسوی1؛ عباسعلی رستگار* 2؛ محسن شفیعی نیکآبادی3 | ||
1دانشجوی دکتری دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان | ||
2استاد و عضو هیات علمی دانشکده اقتصاد، مدیریت و علوم اداری دانشگاه سمنان | ||
3استاد و عضو هیئت علمی دانشکده اقتصاد، مدیریت و علوم اداری دانشگاه سمنان، سمنان، ایران | ||
چکیده | ||
هدف: هدف این مطالعه، بررسی نقش هوش مصنوعی در ارتقاء شیوههای مدیریت منابع انسانی و تقویت مدیریت دانش در این حوزه ، به منظور بهبود نتایج مثبت سازمانی و بهزیستی کارکنان است. در مدیریت منابع انسانی، ادغام هوش مصنوعی میتواند فرآیندهای تصمیمگیری را بهبود بخشد، کارایی را افزایش دهد و انصاف را در مدیریت استعدادها ارتقا دهد. این مطالعه همچنین به چگونگی تعامل هوش مصنوعی با شیوههای مدیریت دانش منابع انسانی مثبتگرا میپردازد، این مطالعه همچنین به اهمیت بهزیستی کارکنان در دستیابی به موفقیتهای پایدار و نحوه بهبود آن از طریق مدیریت دانش منابع انسانی مثبتگرا اشاره دارد. روش پژوهش: این مطالعه از رویکردی ترکیبی استفاده کرده است که شامل روشهای تحقیق کیفی و کمی برای تحلیل جامع نقش هوش مصنوعی در منابع انسانی میباشد. مرحله اول پژوهش شامل یک مرور گسترده از ادبیات موجود در زمینه هوش مصنوعی در منابع انسانی، روانشناسی سازمانی و بهزیستی کارکنان با استفاده از رویکرد متنکاوی و ابزار تحت وب ویانت و نرمافزار رپیدماینر بوده است. مرور ادبیات به شناسایی عوامل کلیدی که بر اجرای موفقیتآمیز هوش مصنوعی در شیوههای منابع انسانی تأثیر میگذارند، مانند شفافیت، انصاف و شخصیسازی تجربیات کارکنان، کمک کرده است. مرحله دوم شامل استفاده از روشهای دیمتل فازی (تحلیل و ارزیابی تصمیمگیری) و نگاشت شناخت فازی بود که از روشهای پرکاربرد در پژوهشهایی است که به تجزیه و تحلیل روابط پیچیده بین عوامل میپردازند. یافتهها: این تحقیق در راستای تحلیل کاربرد هوش مصنوعی در بهبود فرآیندهای منابع انسانی و تاثیر آن بر بهزیستی کارکنان، از روشهای ترکیبی نگاشت شناختی فازی و دیمتل فازی استفاده کرده است. در ابتدا، 188 مقاله نهایی بهمنظور استخراج شاخصهای کلیدی مورد بررسی قرار گرفت. پس از تبدیل محتوای مقالات به فرمت متنی و حذف لغات غیرمرتبط، از ابزار ویانت برای استخراج پرتکرارترین کلمات استفاده شد. این کلمات بهطور دستی پالایش و خوشهبندی شدند و در نهایت 22 شاخص کلیدی برای مدل مفهومی انتخاب گردید. سپس با استفاده از روش دیمتل فازی روابط علّی بین شاخصها تعیین و براساس درجه اثرگذاری و اثرپذیری، روابط میان عوامل مورد تجزیهوتحلیل قرار گرفت. در پایان، نگاشت شناختی فازی بهمنظور رسم شبکه بصری از شاخصها و روابط آنها به کار گرفته شد که در آن مدلسازی استراتژیک منابع انسانی دارای بیشترین اثرگذاری و نیروی کار با پشتیبانی هوش مصنوعی بیشترین اثرپذیری و درجه مرکزیت را دارا بود. نتیجهگیری: یافتهها نشان میدهد که هوش مصنوعی با پشتیبانی از چرخههای مدیریت دانش سازمانی، شامل خلق، اشتراک، ذخیرهسازی و بهکارگیری دانش، میتواند همزمان موجب بهبود کارایی سازمانی و شکوفایی کارکنان شود. بهویژه، سیستمهای هوش مصنوعی قادرند از طریق شناسایی و تقویت ویژگیهای روانشناختی مثبت در کارکنان، همچون تابآوری، خوشبینی، و امید، تجربهی کاری را شخصیسازی کرده و بهرهوری را بهبود بخشند. مدل علّی پژوهش نشان میدهد که هوش مصنوعی از طریق افزایش ظرفیت خلق دانش و بهبود اشتراک دانش، بهویژه با استفاده از تحلیلهای پیشبینیکننده منابع انسانی و الگوریتمهای یادگیری ماشین، میتواند فرآیندهای منابع انسانی را کارآمدتر کرده و به بهبود تجربه کارکنان کمک کند. | ||
کلیدواژهها | ||
مدیریت منابع انسانی مثبتگرا؛ تقویت؛ هوش مصنوعی؛ مدیریت منابع انسانی تقویتشده با هوش مصنوعی | ||
عنوان مقاله [English] | ||
The role of Artificial Intelligence in Promoting The Knowledge Of Positive Human Resource Management: A Causal Model | ||
نویسندگان [English] | ||
Minasadat Mousavi1؛ Abbas ali Rastgar2؛ Mohsen Shafiei Nikabadi3 | ||
1Doctoral student, Faculty of Economics, Management and Administrative Sciences, Semnan University | ||
2Professor, Faculty of Economics, Management and Administrative Sciences, semnan university | ||
3Professor Faculty of Economics management and administrative sciences, Semnan university, Semnan, IRan | ||
چکیده [English] | ||
Purpose: The primary aim of this study is to explore the role of artificial intelligence (AI) in enhancing human resource management practices and strengthening knowledge management in this domain to improve organizational outcomes and employee well-being. In recent years, AI has attracted significant attention due to its clear potential to revolutionize business operations in organizations. In human resource management, the integration of AI can enhance decision-making processes, increase efficiency, and promote fairness in talent management. This study also examines how AI interacts with positive human resource management practices, particularly how this technology can guide human resource processes in a personalized, effective, and supportive manner to help employees thrive and optimize knowledge management in organizations. Moreover, this research aims to provide perspectives and a conceptual framework for integrating AI into human resource practices that benefit both organizations and employees, while facilitating knowledge management in organizations. While the impact of AI on operational efficiency and productivity is well-documented, this study also emphasizes the importance of employee well-being in achieving sustainable success and how it can be improved through positive human resource knowledge management practices. In fact, this study investigates how AI can not only increase productivity but also enhance employee experience and organizational culture. The findings aim to help develop human resource systems that are not only efficient but also human-centered, creating an environment where employees can flourish both personally and professionally. Focusing on the dual goals of organizational success and employee flourishing, this study provides practical recommendations for human resource professionals and organizational leaders interested in leveraging AI to create positive and productive work environments. Methodology: This study employs a mixed-methods approach, incorporating both qualitative and quantitative research methods to comprehensively analyze the role of AI in human resource management. The first phase of the research involved an extensive literature review on AI in human resources, organizational psychology, and employee well-being using text mining techniques and web-based tools like Viante and RapidMiner software. The literature review helped identify key factors influencing the successful implementation of AI in human resource practices, such as transparency, fairness, and personalized employee experiences. The second phase included the use of fuzzy DEMATEL (Decision-Making Trial and Evaluation Laboratory) and fuzzy cognitive mapping methods, which are widely used in research analyzing complex relationships between factors. The fuzzy DEMATEL method was used to identify key factors and barriers to the successful adoption of AI in positive human resource management, while fuzzy cognitive mapping was employed to model and visualize the causal relationships between various factors affecting the adoption of AI in positive human resource knowledge management. These methods are specifically designed to analyze and assess the interdependencies and complex relationships among factors. This research involved a case study from a leading organization in human resources to deeply examine how AI is integrated into human resource practices and its impact on organizational outcomes, employee flourishing, and well-being. This combination of methods allowed the researchers to comprehensively examine fuzzy relationships and averages, providing a practical model for AI application in human resources. Findings: This research used fuzzy cognitive mapping and fuzzy DEMATEL methods to analyze the application of AI in improving human resource processes and its impact on employee well-being. Initially, 188 final articles were reviewed to extract key indicators. After converting the article content into text format and removing irrelevant words, Viante was used to extract the most frequently mentioned terms. These terms were manually filtered and clustered, leading to the selection of 22 key indicators for the conceptual model. Next, RapidMiner software was used to extract key concepts, and with expert opinions and data refinement, these concepts were transformed into the final conceptual model. Then, using the fuzzy DEMATEL method, causal relationships between the indicators were identified, and the relationships between the factors were analyzed based on their influence and impact. Finally, fuzzy cognitive mapping was used to create a visual network of the indicators and their relationships. The findings showed that among the key indicators, strategic human resource modeling plays a crucial role in strengthening human resource processes and enhancing employee flourishing. Furthermore, the use of AI in performance evaluation, workforce needs prediction, and career development processes significantly improved organizational performance and employee job satisfaction. Research limitations/implications: Despite its valuable insights, this study has several limitations. The research is based on a single case study, which may limit the generalizability of the findings to other industries or organizations. Additionally, while the study highlights the potential benefits of AI in HRM, it does not fully explore the long-term implications of AI adoption on employee well-being and organizational performance. Further research is needed to examine the long-term effects of AI on employee satisfaction, retention, and overall organizational culture. Moreover, the study primarily focuses on the technical and operational aspects of AI adoption, while the ethical implications of AI in HRM are only briefly touched upon. As AI continues to evolve, it is crucial to explore the ethical considerations of using AI in human resource practices, such as data privacy, bias, and accountability. Practical implications: The findings of this study have several practical implications for HR professionals and organizational leaders. First, organizations should prioritize transparency and fairness when implementing AI-powered HR systems. Ensuring that AI systems are transparent and explainable can help build trust among employees and mitigate concerns about bias or discrimination. Second, organizations should invest in training programs to ensure that HR professionals and employees understand how AI works and how it can be used to augment HR practices. Furthermore, the study emphasizes the importance of a holistic approach to AI adoption in HRM. Organizations should not only focus on the technological aspects of AI but also consider the organizational culture and employee experience. By integrating AI into PHR practices in a way that supports employee well-being and promotes a positive work environment, organizations can create a culture of growth, engagement, and innovation. Originality/value: This research makes a significant contribution to the field of HRM by providing a novel framework for integrating AI into PHR practices with a focus on employee well-being. While much of the existing research on AI in HRM focuses on operational efficiency and productivity, this study highlights the importance of AI in creating a supportive and positive work environment. The findings contribute to the growing body of knowledge on the intersection of technology and human resource management, offering a new perspective on how AI can be used to promote both organizational success and employee flourishing. | ||
کلیدواژهها [English] | ||
Positive Human Resource Management, Artificial Intelligence, Augmenting, AI, AI-augmented HRM | ||
مراجع | ||
Agarwal, D., Bersin, J., Lahiri, G., Schwartz, J., & Volini, E. (2019). The rise of the social enterprise. In 2018 Deloitte Global Human Capital Trends. Ahmad Zamzuri, M. A. I., Naserrudin, N. A., Ali, N. K. M., Aziz, S. A., Rashid, M. F. A., Dapari, R., ... & Hassan, M. R. (2022). [Retracted]“Best of Both World”: The Amalgamation of Fuzzy Delphi Method with Nominal Group Technique for Dengue Risk Prioritisation Decision‐Making. Journal of Function Spaces, 2022(1), 9581367. https://doi.org/10.1155/2022/9581367 Anandarajan, M., Hill, C., & Nolan, T. (2019). Practical text analytics. Maximizing the Value of Text Data.(Advances in Analytics and Data Science. Vol. 2.) Springer, 45-59. https://doi.org/10.1007/978-3-319-95663-3 Athota, V. S., & Malik, A. (2019). Managing employee well-being and resilience for innovation. Springer Books. https://doi.org/10.1007/978-3-030-06188-3 Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of economic perspectives, 29(3), 3-30. https://doi.org/10.1257/jep.29.3.3 Azeez, r. O., & Ojapinwa, a. F. (2024). Effects of emerging technologies on the wellbeing of procurement and supply chain professionals: evidence from nigeria. Journal of Academic Research in Economics, 16(1). https://doi.org/10.35188/cerj/24.2024.001 Barnes, T., & Wong, S. (2023). AI and Machine Learning in Retail: Transforming Data into Actionable Insights. Journal of Retail Innovation, 32(1), 75-85. https://doi.org/10.1016/j.jmoneco.2017.12.005 Bashynska, I., Prokopenko, O., & Sala, D. (2023). Managing human capital with AI: Synergy of talent and technology. Zeszyty Naukowe Wyższej Szkoły Finansów i Prawa w Bielsku-Białej, 27(3), 39-45. https://doi.org/10.19192/wsfip.sj3.2023.5 Berg, A., Buffie, E. F., & Zanna, L. F. (2018). Should we fear the robot revolution?(The correct answer is yes). Journal of Monetary Economics, 97, 117-148. https://doi.org/10.1016/j.jmoneco.2018.03.003 Berraies, S., Lajili, R., & Chtioui, R. (2020). Social capital, employees' well-being and knowledge sharing: does enterprise social networks use matter? Case of Tunisian knowledge-intensive firms. Journal of Intellectual Capital, 21(6), 1153-1183. https://doi.org/10.1108/JIC-12-2019-0294 Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it?. Business Horizons, 63(2), 215-226. https://doi.org/10.1016/j.bushor.2019.11.005 Bondarouk, T., Parry, E., & Furtmueller, E. (2017). Electronic HRM: four decades of research on adoption and consequences. The International Journal of human resource management, 28(1), 98-131. https://doi.org/10.1080/09585192.2016.1245672 Bouzon, M., Govindan, K., Rodriguez, C. M. T., & Campos, L. M. (2016). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, conservation and recycling, 108, 182-197. https://doi.org/10.1016/j.resconrec.2016.02.016 Bromuri, S., Henkel, A. P., Iren, D., & Urovi, V. (2021). Using AI to predict service agent stress from emotion patterns in service interactions. Journal of Service Management, 32(4), 581-611. https://doi.org/10.1108/JOSM-06-2020-0279 Cameron, K. S. (2003). Organizational virtuousness and performance. Positive organizational scholarship, 48, 65. Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European journal of operational research, 142(1), 174-186. https://doi.org/10.1016/S0377-2217(01)00174-2 Costa, R. L. D., Filipa, T., Martinho, F., Gonçalves, R., Dias, Á., & Pereira, L. (2023). The impact of intelligent systems on the compensation policies of companies of the future. International Journal of Intelligent Enterprise, 10(4), 384-402. Cramarenco, R. E., Burcă-Voicu, M. I., & Dabija, D. C. (2023). The impact of artificial intelligence (AI) on employees’ skills and well-being in global labor markets: A systematic review. Oeconomia Copernicana, 14(3), 731-767. https://doi.org/10.24136/oc.2023.024 Cullen, M. D. M., & Calitz, A. P. (2018, September). Happiness-a business strategy. In International Business Conference Proceedings. Mauritius: North-West University (pp. 1272-1282). Dapari, R., Ismail, H., Ismail, R., & Ismail, N. H. (2017). Application of fuzzy Delphi in the selection of COPD risk variables among steel industry workers. Tanaffos, 16(1), 46. https://doi.org/10.15171/tanaffos.2017.046 Dehghanan, H., Afjeh, S. A. A., Soltani, M., & Javaheri Zadeh, E. (2018). A grounded theory model of talent management process. Human Resource Management Research, 10(4), 185-217. (In Persian) Devaraju, S., & Boyd, T. (2021). Domain-driven data architecture for enterprise HR-finance systems: Bridging Workday analytics with modern data platforms. International Journal of Scientific Research in Computer Science Engineering. https://doi.org/10.32628/CSEIT228128 Donaldson, L. (2001). The contingency theory of organizations. Sage. El Ouakili, O. (2025). The Impact of Artificial Intelligence (AI) on Recruitment Process. Open Journal of Business and Management, 13(2), 749-762. https://doi.org/10.4236/ojbm.2025.132050 Elarabi, H. M., & Johari, F. (2014). The impact of human resources management on healthcare quality. Asian journal of management sciences & education, 3(1), 13-22. Ellikkal, A., & Rajamohan, S. (2024). AI-enabled personalized learning: empowering management students for improving engagement and academic performance. Vilakshan-XIMB Journal of Management. https://doi.org/10.1108/xjm-02-2024-0023 Franco-Santos, M., & Doherty, N. (2017). Performance management and well-being: a close look at the changing nature of the UK higher education workplace. The International Journal of Human Resource Management, 28(16), 2319-2350. https://doi.org/10.1080/09585192.2017.1332885 Galati, F., & Bigliardi, B. (2019). Industry 4.0: Emerging themes and future research avenues using a text mining approach. Computers in Industry, 109, 100-113. https://doi.org/10.1016/j.compind.2019.03.001 García-Madurga, M. Á., Gil-Lacruz, A. I., Saz-Gil, I., & Gil-Lacruz, M. (2024). The role of artificial intelligence in improving workplace well-being: a systematic review. Businesses, (ART-2024-139520). https://doi.org/10.3390/businesses4030024 Ghafarian Sekhavar, Z., Hosseini Gholizadeh, R., & Noghani Dokht Bahmani, M. (2025). Describing the organizational learning network and explaining the factors affecting its formation using network analysis method (Case study: Khorasan Regional Electric Company). Strategic Organizational Knowledge Management, 8(1), 11-32. https://doi.org/10.47176/smok.2025.1821 (In Persian) Gough, D., Oliver, S., & Thomas, J. (2013). Learning from research: Systematic reviews for informing policy decisions. Gruman, J. A., & Budworth, M. H. (2022). Positive psychology and human resource management: Building an HR architecture to support human flourishing. Human Resource Management Review, 32(3), 100911. https://doi.org/10.1016/j.hrmr.2022.100911 Gubler, T., Larkin, I. & Pierce, L. (2017). Doing Well by Making Well: The Impact of Corporate Wellness Programs on Employee Productivity. Management Science 64. https://doi.org/10.1287/mnsc.2017.2909 Guest, D. E. (2017). Human resource management and employee well‐being: Towards a new analytic framework. Human resource management journal, 27(1), 22-38. https://doi.org/10.1111/1748-8583.12138 Haghighi Boroujeni, P., & Tavallaei, R. (2022). Interpretive structural modeling of "organizational knowledge map development". Strategic Management of Organizational Knowledge, 5(4), 45-11. https://doi.org/10.47176/smok.2022.1514 Haji Zadeh, P., & Sardari, A. (2018). The impact of knowledge management on improving organizational innovative performance with an emphasis on the mediating role of organizational learning (Case study: Qaid Basir Petrochemical Products Holding). Strategic Organizational Knowledge Management, 1(2), 63-93. https://doi.org/10.47176/smok.2018.6393 (In Persian). Hamar, Brent DDS, MPH; Coberley, Carter PhD; Pope, James E. MD; Rula, Elizabeth Y. PhD. Well-Being Improvement in a Midsize Employer: Changes in Well-Being, Productivity, Health Risk, and Perceived Employer Support After Implementation of a Well-Being Improvement Strategy. Journal of Occupational and Environmental Medicine 57(4):p 367-373, April 2015. https://doi.org/10.1097/JOM.0000000000000433 Hassani Ahangar, M. R., Tavallaei, R., & Shadmanfar, M. H. (2023). Presenting the model of a wise core - a capable network for the role-playing of universities in the knowledge management of modern Islamic civilization issues based on imam khamenei's thought. Strategic Management of Organizational Knowledge, 6(4), 21-48. https://doi.org/10.47176/smok.2023.1659 Homnan, K., & Wetcha, P. D. P. (2024). Artificial Intelligence As A Tool To Develop Strategic Management Enhancing Atmosphere Conducive To Learning: A Case Study At BTIS, 6(4), 219-228. Horesh, D., Kohavi, S., Shilony-Nalaboff, L., Rudich, N., Greenman, D., Feuerstein, J. S., & Abbasi, M. R. (2022, November). Virtual reality combined with artificial intelligence (vr-ai) reduces hot flashes and improves psychological well-being in women with breast and ovarian cancer: A pilot study. In Healthcare (Vol. 10, No. 11, p. 2261). MDPI. https://doi.org/10.3390/healthcare10112261 Hosseini, S. M., Jafari, M., & Akhavan, P. (2019). Examining the potential for risk creation in knowledge sharing processes in knowledge-based organizations (Case study: A knowledge-based organization in the field of information technology). Strategic Organizational Knowledge Management, 2(4), 1-39. https://doi.org/10.47176/smok.2019.1111 (In Persian) Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of service research, 21(2), 155-172. https://doi.org/10.1177/1094670518758713 Huppert, F. A., & So, T. T. (2013). Flourishing across Europe: Application of a new conceptual framework for defining well-being. Social indicators research, 110, 837-861. https://doi.org/10.1007/s11205-011-9869-3 Ismail, K., Ishak, R., & Kamaruddin, S. H. (2021). Development of professional learning communities model using fuzzy delphi approach. TEM Journal, 10(2), 872. Jackson, N. C., & Dunn-Jensen, L. M. (2021). Leadership succession planning for today’s digital transformation economy: Key variables to build for competency and innovation. Business Horizons, 64(2), 273-284. https://doi.org/10.1016/j.bushor.2020.12.001 Johnson, K. R., Park, S., & Chaudhuri, S. (2020). Mindfulness training in the workplace: Exploring its scope and outcomes. European Journal of Training and Development. https://doi.org/10.1108/EJTD-09-2019-0156 Kaavya, S. V., & Reeves, A. G. (2023a). A Study on Recruitment and Selection in a Multi-Specialty Hospital. International Journal For Multidisciplinary Research, 5(2), 1–7. https://doi.org/10.36948/ijfmr.2023.v05i02.2672 Kazampourian, S., Mohammadi, F., & Taghva, M. R. (2020). The impact of organizational characteristics, knowledge management infrastructure, and entrepreneurial orientation on job communication satisfaction. Strategic Organizational Knowledge Management, 3(10), 45-72. https://doi.org/10.47176/smok.2020.1181 (In Persian) Kowalski, T. H., & Loretto, W. (2017). Well-being and HRM in the changing workplace. The International Journal of Human Resource Management, 28(16), 2229-2255. https://doi.org/10.1080/09585192.2017.1334704 Luthans, F., & Youssef, C. M. (2004). Human, social, and now positive psychological capital management: Investing in people for competitive advantage. https://doi.org/10.1016/j.orgdyn.2004.01.003 Malik, A., Budhwar, P., Mohan, H., & NR, S. (2023). Employee experience–the missing link for engaging employees: Insights from an MNE's AI‐based HR ecosystem. Human Resource Management, 62(1), 97-115. https://doi.org/10.1002/hrm.22133 Malik, A., De Silva, M. T., Budhwar, P., & Srikanth, N. R. (2021). Elevating talents' experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise. Journal of International Management, 27(4), 100871. https://doi.org/10.1002/hrm.22133 Malik, A., Nguyen, T. M., & Budhwar, P. (2022). Towards a conceptual model of AI-mediated knowledge sharing exchange of HRM practices: antecedents and consequences. IEEE Transactions on Engineering Management. https://doi.org/10.1016/j.intman.2021.100871 Malin, Y., Singer, T., Johnson, L. E., & Døssing, M. (2024). Investigating the Effects of an Online Empathy-Compassion Dyad Intervention on Teacher Resilience, Mental Health, Social Emotions, Social Communication, and Interactions. https://doi.org/10.1109/TEM.2022.3163117 Manjunath, D. S., & Dean, S. S. I. M. S. (2024). The Impact of AI in Redefining Performance Appraisal System and its Significance in the Changing Workplace–A Review of Research. ISME Management Journal, 3(1), 16. Massingham, P. R. (2018). Measuring the impact of knowledge loss: a longitudinal study. Journal of Knowledge Management, 22(4), 721-758. https://doi.org/10.1108/JKM-07-2017-0266 McDonald, J. C. (2017). General variables in Employee Engagement Surveys. Illinois Institute of Technology. McGlinchey, D., Roebuck, B. S., Sakauye, P., Lalonde, C., Ferns, A., & Killian, K. (2024). “Increasing Demands and Competing Priorities”: How Organizational Structure Affects Worker Well-Being in the Victim Services Field. Human Service Organizations: Management, Leadership & Governance, 1-18. https://doi.org/10.1080/23303131.2024.2417785 Meijerink, J., Bondarouk, T., & Lepak, D. P. (2021). Managing the human side of AI in HRM. Human Resource Management Review, 31(4), 100795. https://doi.org/10.1016/j.hrmr.2020.100795 Molnár Cs., & Csehné Papp I. (2023). Review of human resource management practices supporting the development of employee wellbeing. Új Munkaügyi Szemle. https://doi.org/10.58269/umsz.2023.3.2 Na, S. R. (2023). Application of Artificial Intelligence in Employee Training and Development. Mathematical Modeling and Algorithm Application, 1(1), 26-28. https://doi.org/10.54097/gg5eemnb Nguyen, T. M., & Malik, A. (2022). A two‐wave cross‐lagged study on AI service quality: The moderating effects of the job level and job role. British Journal of Management, 33(3), 1221-1237. https://doi.org/10.1111/1467-8551.12469 Nicolás-Agustín, Á., Jiménez-Jiménez, D., & Maeso-Fernandez, F. (2022). The role of human resource practices in the implementation of digital transformation. International Journal of Manpower, 43(2), 395-410. https://doi.org/10.1108/IJM-10-2020-0448 Nyathani, R. (2023). AI in performance management: redefining performance appraisals in the digital age. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-146, 134, 2-5. https://doi.org/10.47363/JAICC/2023 OECD (2017). OECD Guidelines on Measuring the Quality of the Working Environment. OECD Publishing, Paris. https://doi.org/10.1787/978926427824 Opatha, H. H. D. N. P. (2009). Human resource management. Department of HRM, University of Sri Jayewardenepura. Ouakouak, M. L., & Ouedraogo, N. (2019). Fostering knowledge sharing and knowledge utilization: The impact of organizational commitment and trust. Business Process Management Journal, 25(4), 757-779. https://doi.org/10.1108/BPMJ-03-2019-0106 Pan, Y., & Froese, F. J. (2023). An interdisciplinary review of AI and HRM: Challenges and future directions. Human resource management review, 33(1), 100924. https://doi.org/10.1016/j.hrmr.2022.100924 Peccei, R., & Van De Voorde, K. (2019). Human resource management–well‐being–performance research revisited: Past, present, and future. Human resource management journal, 29(4), 539-563. https://doi.org/10.1111/1748-8583.12233 Peccei, R., Van De Voorde, K., & Van Veldhoven, M. (2013). HRM well-being and performance: A theoretical and empirical review. HRM & performance: Achievements & challenges, 15-45. Piwowar-Sulej, K. (2022). Environmental strategies and human resource development consistency: Research in the manufacturing industry. Journal of Cleaner Production, 330, 129538. https://doi.org/10.1016/j.jclepro.2021.12953 Pressentium, M. (2016). The Business Case For Education To Include Soft Skills On The Systemic Level: Reflection On Being A Culturally Responsive Educator In Higher Education. Amity Global HRM Review, 6. Prikshat, V., Islam, M., Patel, P., Malik, A., Budhwar, P., & Gupta, S. (2023). AI-Augmented HRM: Literature review and a proposed multilevel framework for future research. Technological forecasting and social change, 193, 122645. https://doi.org/10.1016/j.techfore.2023.122645 Prikshat, V., Malik, A., & Budhwar, P. (2023). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33(1), 100860. https://doi.org/10.1016/j.hrmr.2022.100860 Prikshat, V., Malik, P., & Budhwar, P. (2023). Machine learning and human resource management: A new frontier. International Journal of Human Resource Management, 34(2), 253-274. https://doi.org/10.1080/09585192.2023.1884578 Qin, S., Jia, N., Luo, X., Liao, C., & Huang, Z. (2023). Perceived fairness of human managers compared with artificial intelligence in employee performance evaluation. Journal of Management Information Systems, 40(4), 1039-1070. https://doi.org/10.1080/07421222.2023.2204040 Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022, June). The fallacy of AI functionality. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 959-972). Rathee, R., & Malik, S. (2024, May). Exploring AI-Based Machine Learning Applications in Leadership for Enhancing Employee Happiness and Wellbeing. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-6). IEEE. Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human resource management review, 33(1), 100925. https://doi.org/10.1016/j.hrmr.2023.100925 Roopalatha, N., & Sucharita, K. (2024). Artificial Intelligence On Human Resource Management-Innovation, Challenges And Path Forward. Educational Administration: Theory and Practice, 30(5), 13686-13698. Rudko, I., Bashirpour Bonab, A., & Bellini, F. (2021). Organizational structure and artificial intelligence. Modeling the intraorganizational response to the AI contingency. Journal of Theoretical and Applied Electronic Commerce Research, 16(6), 2341-2364. https://doi.org/10.3390/jtaer16060028 Ruoxing, C., Jianning, W., Basem, A., Hussein, R. A., Salahshour, S., & Baghaei, S. (2025). Examining the application of strategic management and artificial intelligence, with a focus on artificial neural network modeling to enhance human resource optimization with advertising and brand campaigns. Engineering Applications of Artificial Intelligence, 143, 110029. https://doi.org/10.1016/j.engappai.2024.110029 Sabrina, R. (2023). How does selfsacrificial leadership affect knowledge sharing and knowledge hiding?: the mediating effects of employees’trust and intrinsic motivation. https://doi.org/10.29333/ejecs/1165 Sahri, Z., Shuhidan, S. M., & Sanusi, Z. M. (2018). An ontology-based representation of financial criminology domain using text analytics processing. International Journal of Computer Science and Network Security, 18(2), 56-62. Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. Journal of Applied Psychology, 104(10), 1207. https://doi.org/10.1037/apl0000426 Salas‐Vallina, A., Alegre, J., & López‐Cabrales, Á. (2021). The challenge of increasing employees' well‐being and performance: How human resource management practices and engaging leadership work together toward reaching this goal. Human Resource Management, 60(3), 333-347. https://doi.org/10.1002/hrm.22007 Sangbar, M. A., Safi, M. R., & Azar, A. (2019). Application of fuzzy cognitive mapping for designing causal structure and analyzing enablers of sustainable supply chain management in the petrochemical industry. Public Management Research, 12(43), 5-29. https://doi.org/10.22111/jmr.2019.4741 (In Persian) Seligman, M. E. (2011). Flourish: A visionary new understanding of happiness and well-being. Simon and Schuster. Seligman, M. E., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction (Vol. 55, No. 1, p. 5). American Psychological Association. https://doi.org/10.1037/0003-066X.55.1.5 Shahzad, M. F., Xu, S., Lim, W. M., Yang, X., & Khan, Q. R. (2024). Artificial intelligence and social media on academic performance and mental well-being: Student perceptions of positive impact in the age of smart learning. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e12119 Shariatnejad, A. (2023). Identification and analysis of the antecedents and consequences of implementing human resource knowledge management program based on the human resource alignment system (Case study: Government organizations of Lorestan province). Strategic Organizational Knowledge Management, 6(4), 151-180. https://doi.org/10.47176/smok.2023.1646 (In Persian) Shuck, B., & Reio Jr, T. G. (2014). Employee engagement and well-being: A moderation model and implications for practice. Journal of Leadership & Organizational Studies, 21(1), 43-58. https://doi.org/10.1177/1548051813494240 Shuck, B., Alagaraja, M., Rose, K., Owen, J., Osam, K., & Bergman, M. (2017). The health‐related upside of employee engagement: exploratory evidence and implications for theory and practice. Performance Improvement Quarterly, 30(3), 165-178. https://doi.org/10.1002/piq.21246 Sowan, W., Yagil, D., & Cohen, M. (2024). Self‐employed people with chronic health conditions: Business maintenance and well‐being. Stress and Health, 40(5), e3445. https://doi.org/10.1002/smi.3445 Spreitzer, G., & Cameron, K. (2012). Applying a POS lens to bring out the best in organizations. Organizational Dynamics, 41(2), 85-88. https://doi.org/10.1016/j.orgdyn.2012.01.003 Strohmeier, S., & Schaper, N. (2020). Artificial intelligence in human resource management: A systematic review. Journal of Business Research, 116, 1-14. https://doi.org/10.1016/j.jbusres.2019.06.015 Sundaresan, S., & Zhang, Z. (2022). AI-enabled knowledge sharing and learning: redesigning roles and processes. International journal of organizational analysis, 30(4), 983-999. https://doi.org/10.1108/IJOA-10-2021-2872 Sutton, A., Evans, M., Davies, C., & Lawson, C. (2016). The development and longitudinal evaluation of a wellbeing programme: An organisation case study. International Journal of Wellbeing, 6(1), 180-195. https://doi.org/10.5502/ijw.v6i1.487 Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42. https://doi.org/10.1177/0008125619864920 Tarbiyat Farsad, N. K., Shams Morkani, G., & Jafari, I. (2023). The role of technology in leadership with an exploratory mixed-method approach. Human Resource Management Research, 15(2), 191-227. https://doi.org/10.47176/hrmr.2023.1511 (In Persian) Tatarkanov, A. A., Alexandrov, I. A., Chervjakov, L. M., & Karlova, T. V. (2022). A fuzzy approach to the synthesis of cognitive maps for modeling decision making in complex systems. Emerging Science Journal, 6(2), 368-381. https://doi.org/10.28991/esj-2022-06-02-016 Teshale, S. M., & Lachman, M. E. (2016). Managing daily happiness: The relationship between selection, optimization, and compensation strategies and well-being in adulthood. Psychology and aging, 31(7), 687. https://doi.org/10.1037/pag0000080 Totian, S., Shahmirzalu, N., Lali, F., & Sidi, F. (2024). Identification of antecedent factors of digital-oriented human resource management in Iranian knowledge-based companies: A qualitative study. Human Resource Management Research, 16(4), 35-69. https://doi.org/10.47176/hrmr.2024.1646 (In Persian) Uka, A., & Prendi, A. (2021). “Motivation as an indicator of performance and productivity from the perspective of employees”. Management & Marketing. Challenges for the Knowledge Society, Vol. 16, No. 3, pp. 268-285. https://doi.org/10.2478/mmcks-2021-0016 Umrani, W. A., Bachkirov, A. A., Nawaz, A., Ahmed, U., & Pahi, M. H. (2024). Inclusive leadership, employee performance and well-being: an empirical study. Leadership & Organization Development Journal, 45(2), 231-250. https://doi.org/10.1108/LODJ-07-2022-0406 Van De Voorde, K., Paauwe, J., & Van Veldhoven, M. (2012). Employee well‐being and the HRM–organizational performance relationship: a review of quantitative studies. International Journal of Management Reviews, 14(4), 391-407. https://doi.org/10.1111/j.1468-2370.2011.00322.x Vimaladevi, S., Gopi, V., Kumar, R., & Rajalakshmi, M. (2024). The Role Of Ai In Workforce Planning And Optimization: A Study On Staffing And Resource Allocation. Asian And Pacific Economic Review, 17(2), 123-144. https://doi.org/10.6084/m9.figshare.26198327 Vivek, R., & Krupskyi, O. P. (2024). EI & AI in leadership and how it can affect future leaders. Wesarat, P., Sharif, M.Y. and Majiid, A.H.A. (2015). A Conceptual Framework of Happiness at the Workplace. Asian Social Science, 11(2). https://doi.org/10.5539/ass.v11n2p115 Wisskirchen, G.; Biacabe, B.T.; Bormann, U.; Muntz, A.; Niehaus, G.; Soler, G.J.; von Brauchitsch, B. Artificial Intelligence and Robotics and Their Impact on the Workplace; IBA Global Employment Institute: London, UK, 2017. Wright, P. M., & Ulrich, M. D. (2017). A road well traveled: The past, present, and future journey of strategic human resource management. Annual Review of Organizational Psychology and Organizational Behavior, 4(1), 45-65. https://doi.org/10.1146/annurev-orgpsych-041015-062312 Yu, X., Li, D., Tsai, C. H., & Wang, C. (2019). The role of psychological capital in employee creativity. Career Development International, 24(5), 420-437. https://doi.org/10.1108/CDI-09-2018-025 Zhang, E., & Lu, X. (2023). Social ai improves well-being among female young adults. arXiv preprint arXiv:2311.14706. | ||
آمار تعداد مشاهده مقاله: 14 تعداد دریافت فایل اصل مقاله: 10 |