
تعداد نشریات | 33 |
تعداد شمارهها | 1,335 |
تعداد مقالات | 9,645 |
تعداد مشاهده مقاله | 9,844,800 |
تعداد دریافت فایل اصل مقاله | 6,060,953 |
نسلهای مدیریت دانش با تمرکز بر نسل چهارم: بازنگری مدل SECI | ||
مدیریت راهبردی دانش سازمانی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 08 مهر 1404 اصل مقاله (1.78 M) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.47176/smok.2025.1938 | ||
نویسندگان | ||
محمدحسن توکلی* 1؛ حجت الله مومیوند2 | ||
1دانشجوی کارشناسیارشد، رشته مدیریت دانش، دانشکده دانش و هوش شناختی، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
2پژوهشگر مرکز دانش و هوش شناختی دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
چکیده | ||
هدف: بشر از دیرباز به دنبال راههایی برای حفظ، انتقال و بهرهبرداری از دانش بوده است. ظهور فناوریهای نوین مانند هوش مصنوعی، یادگیری ماشین، اینترنت اشیا و متاورس، نحوهی مدیریت، تبادل و خلق دانش را به طور بنیادین دگرگون کرده است. نسل چهارم مدیریت دانش، پاسخ مستقیمی به تحولات سریع و گسترده در دنیای دیجیتال است. با وجود این پیشرفتها ادبیات علمی مدیریت دانش همچنان فاقد چارچوبی جامع برای تبیین نسل چهارم مدیریت دانش و ادغام آن با فناوریهای نوظهور است. این پژوهش با تعریف مرز روشنی میان نسلهای مدیریت دانش به ارائه مدلی نوین برای مدیریت دانش از طریق بازنگری مدل نوناکا و تاکوچی در عصر هوش مصنوعی عمومی میپردازد. روش پژوهش: این پژوهش کیفی با رویکرد مرور سیستماتیک ادبیات و بر اساس استانداردهای گزارشدهی PRISMA انجام شد. جامعه آماری پژوهش شامل مقالات منتشرشده بین سالهای ۲۰۱۹ تا ۲۰۲۴ در پایگاههای علمی Scopus، Web of Science، SID، Noormags و Civilica بود. از میان ۱۵۵۰ منبع شناساییشده، پس از نمونهگیری هدفمند و غربالگری سهمرحلهای (حذف ۱۰۰ مقاله تکراری، ۱۰۰ مقاله غیرمرتبط در مرحله اولیه، و ۱۱۰۰ مقاله در مرحله ثانویه با استفاده از ابزارهای ارزیابی کیفیت CASP و AMSTAR)، ۶۴ مقاله انتخاب شد. دادهها با استفاده از فرم استاندارد استخراج و از طریق تحلیل مضمونی با نرمافزار NVivo و تحلیل کتابسنجی با نرمافزار VOSviewer بررسی شدند. روایی پژوهش از طریق روش triangulation و پایایی آن با کدگذاری مستقل توسط دو پژوهشگر تأمین شد. یافتهها: نخست، هوش مصنوعی عمومی از طریق پردازش دادههای غیرساختاریافته و کشف الگوهای پیچیده، خلق دانش سازمانی را تسهیل میکند؛ دوم، فناوریهای نوظهور فرصتهایی نظیر ارتقای چابکی سازمانی و شخصیسازی یادگیری را فراهم میسازند، اما با چالشهایی از قبیل سوگیریهای الگوریتمی، نگرانیهای مرتبط با حریم خصوصی، و محدودیتهای زیرساختی مواجهاند؛ سوم، بازنگری مدل نوناکا و تاکوچی نشان داد که هوش مصنوعی عمومی با شبیهسازی تعاملات انسانی و تحلیل پیشرفته دادهها، مراحل اجتماعیسازی، بیرونیسازی، ترکیب، و درونیسازی را بهطور قابلتوجهی بهبود میبخشد. نتیجهگیری: نسل چهارم مدیریت دانش با ادغام هوش مصنوعی عمومی و فناوریهای مکمل، پارادایمی هوشمند و پویا ایجاد کرده که کارایی فرآیندهای دانشی را ارتقا داده و مزیت رقابتی پایدار فراهم میکند. اصالت/ارزش: این پژوهش نخستین مطالعه در سطح ملی است که با تمرکز بر هوش مصنوعی عمومی و فناوریهای نوظهور، ضمن مرزبندی دقیق نسلهای مدیریت دانش، به بازتعریف مدل نوناکاو تاکوچی در بستر نسل چهارم پرداخته و چارچوبی نوآورانه برای مدیریت دانش در عصر دیجیتال ارائه میدهد؛ امری که در ادبیات پژوهشی پیشین مغفول مانده است. | ||
کلیدواژهها | ||
هوش مصنوعی؛ هوش مصنوعی عمومی؛ مدل نوناکا و تاکوچی؛ نسل چهارم مدیریت دانش | ||
عنوان مقاله [English] | ||
The Evolution of Knowledge Management Generations with a Focus on the Fourth Generation: Revisiting the SECI Model | ||
نویسندگان [English] | ||
Mohammad Hasan Tavakoli1؛ Hojatollah Momivand2 | ||
1Masters Student, Knowledge Management, Faculty of Knowledge and Cognitive Intelligence, Imam Hussein University, Tehran, Iran | ||
2Researcher, Center for Knowledge and Cognitive Intelligence, Imam Hossein University, Tehran, Iran | ||
چکیده [English] | ||
Purpose: Knowledge management (KM) has been a cornerstone of human progress, evolving from oral traditions to structured systems for preserving, transferring, and leveraging knowledge. Over time, humanity has sought innovative methods to harness knowledge as a strategic asset, particularly in organizational contexts. The advent of modern technologies, such as artificial intelligence (AI), machine learning (ML), the Internet of Things (IoT), and the metaverse, has fundamentally transformed how knowledge is managed, shared, and created. These advancements have ushered in what is termed the "fourth generation" of knowledge management, a paradigm that responds directly to the rapid and pervasive developments in the digital era. Unlike previous generations, which focused on codifying explicit knowledge, fostering human interactions, or aligning knowledge with strategic objectives, the fourth generation leverages cutting-edge technologies to create intelligent, dynamic, and scalable knowledge ecosystems. However, despite these technological strides, the scientific literature on knowledge management lacks a comprehensive framework to fully articulate the characteristics of this fourth generation and its integration with emerging technologies, particularly Artificial General Intelligence (AGI). AGI, with its ability to mimic human cognitive capabilities, promises to revolutionize knowledge processes by automating complex tasks, personalizing learning, and uncovering hidden patterns in data. This study addresses this gap by delineating clear distinctions between the generations of knowledge management and proposing a novel model for the fourth generation. Specifically, it revisits and redefines the Nonaka and Takeuchi SECI model (Socialization, Externalization, Combination, Internalization) in the context of AGI, offering a framework that aligns with the demands of the digital age. By doing so, this research provides both theoretical insights and practical guidance for organizations seeking to harness advanced technologies for sustainable competitive advantage. Methodology: This qualitative research was conducted using a systematic literature review (SLR) approach, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards to ensure rigor and transparency. The study targeted peer-reviewed articles published between 2019 and 2024, sourced from reputable scientific databases, including Scopus, Web of Science, SID, Noormags, and Civilica. These databases were selected for their comprehensive coverage of both international and regional (Persian-language) scholarship, ensuring a broad and inclusive perspective. The research process began with the identification of 1,550 relevant sources through a combination of keyword searches and logical operators tailored to knowledge management, AGI, and emerging technologies. A three-stage screening process was employed: first, 100 duplicate articles were removed; second, 100 unrelated articles were excluded based on title and abstract screening; and third, 1,100 articles were further eliminated using the Critical Appraisal Skills Programme (CASP) and AMSTAR quality assessment tools to ensure methodological rigor. This process resulted in the selection of 64 high-quality articles for in-depth analysis. Data extraction was performed using a standardized form to capture key details such as study objectives, methodologies, findings, and relevance to the fourth generation of KM. The extracted data were analyzed through two complementary methods: thematic analysis using NVivo software to identify recurring themes and patterns, and bibliometric analysis using VOSviewer software to map research clusters, author networks, and citation trends. To enhance the study’s validity, the triangulation method was employed, cross-referencing findings from multiple sources. Reliability was ensured through independent coding by two researchers, with discrepancies resolved through consensus. This rigorous methodology allowed for a robust synthesis of the current state of knowledge management and its evolution into the fourth generation. Findings: The study’s findings highlight three key insights into the fourth generation of knowledge management and its integration with emerging technologies. First, AGI significantly enhances organizational knowledge creation by processing unstructured data and uncovering complex patterns that were previously inaccessible. Unlike traditional AI, which is limited to specific tasks, AGI’s ability to emulate human-like reasoning enables it to analyze vast datasets, identify trends, and generate actionable insights, thereby fostering innovation and agility. For instance, AGI can extract meaningful knowledge from diverse sources, such as social media, IoT-generated data, and organizational repositories, enabling organizations to respond swiftly to market changes. Second, emerging technologies, including AGI, IoT, and augmented/virtual reality (AR/VR), present both opportunities and challenges for knowledge management. Opportunities include enhanced organizational agility, personalized learning experiences tailored to individual needs, and improved decision-making through real-time data analysis. For example, IoT facilitates the collection of real-time data from interconnected devices, while AR/VR creates immersive environments for knowledge transfer, such as virtual training simulations. However, these technologies also introduce challenges, such as algorithmic biases, which may skew decision-making, privacy concerns related to data collection, and infrastructure limitations that hinder scalability. Organizations must address these challenges through robust ethical frameworks and investments in digital infrastructure. Third, the study’s revision of the Nonaka and Takeuchi SECI model demonstrates how AGI transforms its four stages. In the socialization phase, AGI simulates human interactions in virtual environments, enabling knowledge sharing without physical presence. In externalization, AGI’s advanced natural language processing capabilities convert tacit knowledge into explicit forms, such as reports or models, with greater accuracy and cultural sensitivity. In the combination phase, AGI integrates diverse knowledge sources to create novel insights, uncovering interdisciplinary connections that enhance innovation. Finally, in internalization, AGI supports experiential learning through adaptive simulations, allowing individuals to internalize explicit knowledge as tacit expertise. These advancements mark a significant departure from the third generation of KM, positioning the fourth generation as a dynamic, intelligent, and technology-driven paradigm. Research limitations/implications: Despite its comprehensive approach, this study faced several methodological limitations. The focus on the 2019–2024 period, chosen to capture recent trends in AGI and the metaverse, may have excluded foundational studies from earlier periods. Additionally, the inclusion of only Persian and English-language articles, driven by publication volume and researcher accessibility, omitted potentially valuable contributions in other languages, such as Chinese or German. The reliance on literature review methodology, without incorporating empirical data from interviews or surveys, limited the depth of analysis. Furthermore, the use of specific databases (e.g., Scopus, SID) may have overlooked sources in less prominent repositories. To address these limitations, future research should adopt hybrid methodologies, combining literature reviews with empirical data, and incorporate multilingual sources to enhance inclusivity. Despite these constraints, the study’s findings have significant implications for both theory and practice, offering a foundation for further exploration of the fourth generation of KM. Practical implications: The research underscores the importance of leveraging AGI, IoT, and AR/VR to build intelligent knowledge management systems. Organizations should invest in digital infrastructure to support these technologies, fostering a culture of human-machine collaboration to maximize their potential. For instance, AGI can personalize employee learning by analyzing individual preferences and performance, while IoT can optimize knowledge flows in supply chains. To mitigate challenges like algorithmic biases and privacy concerns, organizations should adopt technologies like blockchain for secure and transparent knowledge sharing. By rethinking the SECI model through the lens of AGI, organizations can enhance knowledge processes, achieve greater agility, and drive innovation, ultimately securing a sustainable competitive advantage in dynamic markets. Originality/value: This research offers significant originality and scientific value by providing a novel framework for the fourth generation of knowledge management. Focusing on General Artificial Intelligence (AGI) and emerging technologies, it establishes a clear distinction between the third and fourth generations of knowledge management and redefines the Nonaka and Takeuchi SECI model within the context of AGI. This approach addresses a critical research gap in the knowledge management literature and introduces an innovative framework for managing knowledge in the digital era, which has not been previously explored. The study's value lies in offering practical guidance for organizations to leverage advanced technologies to enhance knowledge processes and achieve a sustainable competitive advantage. | ||
کلیدواژهها [English] | ||
Artificial Intelligence, General Artificial Intelligence, Nunaka Model and Takucci, Fourth Generation of Knowledge Management | ||
مراجع | ||
Ahmadi, S., & Rezaei, M. (2019). The application of artificial intelligence in knowledge management. Journal of Information Technology Management, 12(3), 45–63. (In Persian) Amsari, D., Wahyuni, E. S., & Fadhilaturrahmi, F. (2024). The social learning theory Albert Bandura for elementary school students. Jurnal Basicedu, 8(2), 1654–1662. https://doi.org/10.31004/basicedu.v8i2.7247 Andriani, M., Christiandy, A., Wiratmadja, I. I., & Sunaryo, I. (2022). Knowledge management effectiveness model in facilitating generation differences. Knowledge Management Research & Practice, 20(6), 947–959. https://doi.org/10.1080/14778238.2022.2129494 Anshari, M., Syafrudin, M. A., Tan, A., Fitriyani, N., & Alas, Y. (2023). Optimisation of knowledge management (KM) with machine learning (ML) enabled. Information, 14(1), 35. https://doi.org/10.3390/info14010035 Arshi, O., & Chaudhary, A. (2024). Overview of artificial general intelligence (AGI). In Advanced technologies and societal change (pp. 1–15). Springer. https://doi.org/10.1007/978-981-97-3222-7_1 Azizian, A. (2023). An exploration of science and knowledge in ancient Iran. Proceedings of the Fourth National Conference on History Education. (In Persian) Azmi, Z., Erlina, E., Muda, I., & Erwin, K. (2024). Exploring the use of knowledge-based view in accounting and the business environment. Ekombis Review: Jurnal Ilmiah Ekonomi Dan Bisnis, 12(3). https://doi.org/10.37676/ekombis.v12i3.5883 Bailey, A. (2017). Can CoP theory be applied? Exploring praxis in a community of practice on gender. Knowledge Management for Development Journal, 13(3), 80–92. Barbera, J., Naibert, N., Komperda, R., Pentecost, T. C., & Barbera, J. (2023). Augmented reality in medical education: A systematic review. Medical Education Online, 28(1), 1–15. https://doi.org/10.1080/10872981.2022.2136873 Barbera, J., Naibert, N., Komperda, R., Pentecost, T. C., & Barbera, J. (2023). Augmented reality in medical education: A systematic review. Medical Education Online, 28(1), 1–15. Barbosa, R. S., Baeta, O. V., Prado Júnior, P. P. do, & Abrantes, L. A. (2024). The theory of organizational action in the integrated worker health care subsystem (SIASS): Elucidating behaviors and integrating occupational health actions. International Conference on Integrated Care Management Systems. https://doi.org/10.56238/i-cims-028 Bergh, D. D., D’Oria, L., Crook, T. R., & Roccapriore, A. Y. (2024). Is knowledge really the most important strategic resource? A meta-analytic review. Strategic Management Journal. https://doi.org/10.1002/smj.3645 Boateng, S. L. (2025). Embracing knowledge gaps: A pathway to growth for marketers. Development and Learning in Organizations. https://doi.org/10.1108/dlo-08-2024-0238 Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. Capestro, M., & Kinkel, S. (2020). Industry 4.0 and knowledge management: A review of empirical studies. Journal of Manufacturing Technology Management, 31(5), 1019–1038. Cerchione, R., Centobelli, P., Borin, E., Usai, A., & Oropallo, E. (2024). The WISED knowledge-creating company: Rethinking SECI model in light of the digital transition. Journal of Knowledge Management. https://doi.org/10.1108/jkm-02-2024-0133 Christin, L., Masnita, Y., Yusran, H. L., & Tanuwijaya, J. (2024). The influence of strategic human resource practices and ethical leadership on organizational performance of star hotels: Mediated by intellectual capital and sustainable competitive advantage. Dinasti International Journal of Education Management and Social Science, 6(1), 64–81. https://doi.org/10.38035/dijemss.v6i1.3060 Chuah, K. B., & Law, K. M. Y. (2020). What is organizational learning? In Organizational learning in Asia (pp. 3–14). Springer. https://doi.org/10.1007/978-3-030-23997-8_1 Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans—and where they can’t (yet). McKinsey Quarterly. Cohendet, P., Dupouët, O., Llerena, P., Naggar, R., & Rampa, R. (2024). Knowledge-based approaches to the firm: An idea-driven perspective. Industrial and Corporate Change. https://doi.org/10.1093/icc/dtae032 Dalkir, K. (2011). Knowledge management in theory and practice (2nd ed.). MIT Press. Dalkir, K. (2023). Key milestones in the evolution of knowledge management: What is next? In K. Dalkir (Ed.) , Knowledge management in theory and practice (pp. 47–65). Springer. https://doi.org/10.1007/978-3-031-38696-1_3 Dalkir, K. (2023).Knowledge Management in Theory and Practice (4th ed.). MIT Pres Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organizations manage what they know. Harvard Business Review Press. Davenport, T. H., & Prusak, L. (2022). Working knowledge: How organizations manage what they know (3rd ed.). Harvard Business Review Press. Dei, D.-G. J., Kankam, P., Anane-Donkor, L., Puttick, C. P., & Peasah, T. (2024). Knowledge repositories for managing knowledge in learning organizations. Electronic Journal of Knowledge Management, 22(1). https://doi.org/10.34190/ejkm.22.1.3018 Deng, X., & Lu, Y. (2022).Knowledge sharing in organization: A systematic review.Cogent Business & Management, 9(1), Article 2195027. https://doi.org/10.1080/23311975.2023.2195027 Drucker, P. F. (1993). Post-capitalist society. HarperBusiness. Dutra de Andrade, R., & Benfica, V. C. (2023). The evolution of knowledge sharing and innovation: Exploring epistemological reflections. Contribuciones a Las Ciencias Sociales. https://doi.org/10.55905/revconv.16n.7-228 Edgar, W. B., & Albright, K. S. (2022). Knowledge management activities: Conceptual foundations and research issues. Journal of Information Science, 016555152110695. https://doi.org/10.1177/01655515211069538 Engel, C., Ebel, P., & Leimeister, J. M. (2022). Cognitive automation. Electronic Markets, 32(1), 339–350. https://doi.org/10.1007/s12525-021-00519-7 Franco, M. (2010). Meeting organizational performance with shared knowledge management processes. In Knowledge management. InTech. https://doi.org/10.5772/8454 Ghafarian, A., Rahmati, H., & Khajeh, A. (2025). Describing the organizational learning network and explaining the influencing factors: A case study of Khorasan Regional Electricity Company. Strategic Management of Organizational Knowledge, 8(1), 11–32. https://doi.org/10.47176/smok.2025.1821 (In Persian) Gómez Villalpando, A. (2025). Aprendizaje organizacional de la gestión educativa de la innovación. Emerging Trends in Education, 7(14), 26–49. https://doi.org/10.19136/etie.v7n14.6307 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Gupta, B., & Achhnani, B. (2024). Structuring organizations for KM. Development and Learning in Organizations, 38(3), 19–22. https://doi.org/10.1108/DLO-08-2023-0169 Hadjimichael, D., Pyrko, I., & Tsoukas, H. (2023). Beyond tacit knowledge: How Michael Polanyi’s theory of knowledge illuminates theory development in organizational research. Academy of Management Review. https://doi.org/10.5465/amr.2022.0289 Halford, F., & Ables, D. M. (2023). The National Cultural Resources Information Management System (NCRIMS). Advances in Archaeological Practice, 11(1), 52–62. https://doi.org/10.1017/aap.2022.39 Hassabis, D., Silver, D., & Kavukcuoglu, K. (2020). Artificial general intelligence: Toward a new frontier. Nature Communications, 11(1), 24–31. https://doi.org/10.1038/s41467-020-16554-9 Hassani Ahangar, M. R., Tavallaei, R., & Shadmanfar, M. H. (2023). Presenting the model of a wise core - a capable network for the role-playing of universities in the knowledge management of modern Islamic civilization issues based on imam khamenei's thought. Strategic Management of Organizational Knowledge, 6(4), 21-48. https://doi.org/10.47176/smok.2023.1659 Hosseini, S. J., Rezaei-Noor, J., Masoumi-Kashani, M. H., & Akbari, A. (2021). KM evaluation in public sector using EFQM. Industrial Management & Data Systems, 121(5), 1093–1115. https://doi.org/10.1108/IMDS-03-2020-0138 (In Persian) Huang, L., & Zhang, M. (2023). AI-driven learning paths: Enhancing personalized education through artificial intelligence. International Journal of Educational Technology, 58(2), 45–58. Idrees, H., Xu, J., Haider, S. A., & Tehseen, S. (2023).A systematic review of knowledge management and new product development projects.Journal of Innovation & Knowledge, 8(2), 100350. https://doi.org/10.1016/j.jik.2023.100350 Järvelä, S., Zhao, G., Nguyen, A., & Chen, H. (2025). Hybrid intelligence: Human–AI coevolution and learning. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13560 Jiang, Y., Zhang, H., & Chen, Y. (2024). Artificial intelligence and human interaction: A new perspective on knowledge management. Journal of AI and Knowledge Management, 12(2), 115–128. Jorge, H., Betancur, A., Gastón, D., Rodríguez, S., Elkin, D., Rave, G., & Moncada, E. A. (2023). Gestión del conocimiento en 10 empresas colombianas siguiendo el modelo Nonaka y Takeuchi: Estudio de casos múltiples entrelazados [Knowledge management in 10 Colombian companies following the Nonaka and Takeuchi model: A multiple case study]. Cuadernos de Administración, 38(74). https://doi.org/10.25100/cdea.v38i74.11740 Joshi, K. (2024). Artificial general intelligence (AGI): A comprehensive review. Journal of the Epidemiology Foundation of India, 2(3). https://doi.org/10.56450/jefi.2024.v2i03.004 Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003 Karmakar, P., Sinha, S., & Pal, D. (2024). Artificial intelligence. International Journal of Advanced Research in Science, Communication and Technology. https://doi.org/10.48175/ijarsct-19613 Kerr, J., Smith, B., & Roberts, P. (2023). Artificial general intelligence and its implications for knowledge management: A review of recent trends. Journal of Knowledge Management, 27(4), 850–865. https://doi.org/10.1108/JKM-04-2022-0289 Khalil, C., Khalil, C., & Khalil, S. (2020). Exploring knowledge management in agile software development organizations. International Entrepreneurship and Management Journal, 16(2), 555–569. https://doi.org/10.1007/s11365-019-00582-9 Khamenei, A. (2018). Remarks during a meeting with cognitive science development headquarters officials. (In Persian) Khamenei, A. (2021). Remarks during a meeting with a group of scientific elites and outstanding talents. (In Persian) Khamenei, A. (2024). Remarks during the first meeting with the fourteenth government cabinet. (In Persian) Kilimova, L., Cherkashin, M. D., & Spichina, A. O. (2024). Knowledge management as a strategic resource for organizational development. Izvestiâ Ûgo-Zapadnogo Gosudarstvennogo Universiteta, 14(5), 213–226. https://doi.org/10.21869/2223-1552-2024-14-5-213-226 Kühbacher, D. (2023). A dynamic and empowering organizational learning system. In Organizational learning in dynamic environments (pp. 201–231). Springer. https://doi.org/10.1007/978-981-19-4078-1_9 Li, X., Qiang, Q., Huang, L., & Huang, C. (2022). How knowledge sharing affects business model innovation: An empirical study from the perspective of ambidextrous organizational learning. Sustainability, 14(10), 6157. https://doi.org/10.3390/su14106157 Liu, X., Zhang, T., & Wang, L. (2023). Advancements in artificial general intelligence: Challenges and potential solutions. Journal of Artificial Intelligence Research, 78(2), 145–160. https://doi.org/10.1613/jair.1.14258 Luo, Y., Yang, K., & Wu, Y. (2023). Empowering AI drug discovery with explicit and implicit knowledge. arXiv. https://doi.org/10.48550/arXiv.2305.01523 Macucule, A. J., & Valentim, M. L. P. (2024). Informação, conhecimento e inteligência organizacional: Das bases conceptuais ao comportamento epistemológico na Ciência da Informação. Transinformação, 36. https://doi.org/10.1590/2318-0889202436e248501 Madsen, D. Ø., & Andersen, P. H. (2020). Organizational knowledge management and its role in digital transformation. Knowledge and Process Management, 27(3), 239–248. https://doi.org/10.1002/kpm.1642 Magnani, L., & Biglari, A. (2024). Externalization of the mind in the meaning-making process: An integrated semiotic and cognitive science perspective. Cognitive Semiotics. https://doi.org/10.1515/cogsem-2024-2014 Mele, G., Capaldo, G., Secundo, G., & Corvello, V. (2023). Revisiting knowledge-based dynamic capabilities. Journal of Knowledge Management, 28(2), 532–563. https://doi.org/10.1108/JKM-02-2023-0121 Mihajlović, M., Marković, S., Vujanić, I., Marijanović, R. P., & Ramadhani, I. H. (2024). Knowledge and information management in the company as a strategic business resource. Oditor, 10(3), 53–67. https://doi.org/10.59864/oditor32403mm Mihi Ramírez, A., García Morales, V. J., & Martín Rojas, R. (2011). Knowledge creation, organizational learning and their effects on organizational performance. Engineering Economics, 22(3), 309–314. https://doi.org/10.5755/j01.ee.22.3.521 Mohammadi, F. (2021). Artificial intelligence and the future of knowledge management. Tehran: University Publications. (In Persian) Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 Morelock, J., & Williamson, J. B. (2018). Socialization. In The Blackwell encyclopedia of sociology. Wiley. https://doi.org/10.1002/9781394260331.ch79 Motwani, J., & Kataria, A. (2024). Organizational agility: A literature review and research agenda. International Journal of Productivity and Performance Management. https://doi.org/10.1108/ijppm-07-2023-0383 Najafzadeh, M., & Soleimani, A. (2023). Deep learning in artificial intelligence. Proceedings of the Second Conference of Computer Engineering and Information Technology Students. https://civilica.com/doc/1796775 (In Persian) Nguyen, T. Z., Le, C., Nguyen, M. T., Nguyen, G., Lien, T. T. H., & Nguyen, O. (2024). The organisational impact of agility: A systematic literature review. Management Review Quarterly. https://doi.org/10.1007/s11301-024-00446-9 Ning, X., Yang, Y., Han, Y., & Lv, Y. (2024). Incentivizing Tacit Knowledge Sharing in Competitive and Heterogeneous Environments. IEEE Transactions on Engineering Management, 1–20. https://doi.org/10.1109/tem.2024.3406707 Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press. Nonaka, I., & Takeuchi, H. (2021). The evolving role of knowledge management in the age of digital transformation. Journal of Knowledge Management, 25(6), 1413–1435. https://doi.org/10.1108/JKM-06-2020-0456 Olan, F., Ogiemwonyi Arakpogun, E., Suklan, J., Nakpodia, F., Damij, N., & Jayawickrama, U. (2022). Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. Journal of Business Research, 145, 605–615. https://doi.org/10.1016/j.jbusres.2022.03.008 Paliwal, J. P., & Girard, J. (2015). Defining knowledge management: Toward an applied compendium. Online Journal of Applied Knowledge Management, 3(1), 1–20. Paul, M. P., & José, V. (2024). The generative AI solutions for enhancing knowledge management: Literature review and roadmap. Proceedings of the European Conference on Knowledge Management, 25(1). https://doi.org/10.34190/eckm.25.1.2770 Piwowarczyk, Z. (2024). Knowledge sharing in distributed teams—The impact of virtual collaboration tools. International Multidisciplinary Scientific GeoConference SGEM, 24, 51–58. https://doi.org/10.5593/sgem2024/2.1/s07.07 Polanyi, M. (1966). The tacit dimension. Routledge & Kegan Paul. Prihandoko, D., Arief, M., Elidjen, E., Alamsjah, F., & Rizky, Z. S. (2024). Leveraging artificial intelligence for knowledge management: A systematic literature analysis. Proceedings of the International Conference on Computer and Information Technology, 1, 1–6. https://doi.org/10.1109/iccit62134.2024.10701138 Qin, R., Yuan, Y., & Wang, F.-Y. (2020). Blockchain-based knowledge automation for CPSS-oriented parallel management. IEEE Transactions on Computational Social Systems, 7(5), 1180–1188. https://doi.org/10.1109/TCSS.2020.3023046 Rathore, H., & Singh, A. (2022). Knowledge management and its impact on organizational performance: A systematic review. Journal of Knowledge Management, 26(2), 367–390. https://doi.org/10.1108/JKM-02-2021-0227 Raysa, G. R., Kragulj, F., & Pinheiro, P. (2022). The wise leader: Where did the roads pave by Nonaka and Takeuchi lead to? Proceedings of the European Conference on Knowledge Management, 23(2). https://doi.org/10.34190/eckm.23.2.350 Robson, E. (2008). Mathematics in ancient Iraq: A social history. Princeton University Press. Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson. Sabeti, S., MalekMohammadi, S., & Kasraei, A. R. (2024). The role of artificial intelligence in shaping the future of modern knowledge management. Proceedings of the Eighth National Conference on Interdisciplinary Research in Engineering and Management Sciences. (InPersian) Salas, F. (2020). Gestión del conocimiento a través del modelo de socialización, exteriorización, combinación e interiorización (SECI): En las bibliotecas de la Universidad Nacional Abierta Centro Local Falcón. Revista de Investigación, 3(1), 41–60. https://doi.org/10.33264/RPA.202001-04 Salem, M., Salloum, S. A., & Shaalan, K. (2024). Exploiting AI’s potential in knowledge management. In Artificial intelligence for knowledge management (pp. 283–299). Springer. https://doi.org/10.1007/978-3-031-52280-2_18 Schiuma, G., Carlucci, D., & Lerro, A. (2020). Big data and knowledge management: Implications for theory and practice. Journal of Business Research, 109, 222–234. https://doi.org/10.1016/j.jbusres.2019.11.067 Sen, A. (2024). Organizational knowledge and knowledge management—A new framework. American Journal of Management Science and Engineering. https://doi.org/10.11648/j.ajmse.20240901.11 Shrestha, Y. R., & Zhao, K. (2019). Impact of AI on knowledge management: The future of business intelligence. International Journal of Information Management, 45, 127–135. https://doi.org/10.1016/j.ijinfomgt.2018.10.006 Sinnema, C., Hannah, D., Finnerty, A., & Daly, A. J. (2021). A theory of action account of an across-school collaboration policy in practice. Journal of Educational Change, 1, 1–28. https://doi.org/10.1007/s10833-020-09408-w Smith, A., & Liu, X. (2023). AI-driven knowledge management systems: Trends and challenges. Journal of Knowledge Management, 34(3), 200–212. https://doi.org/10.1108/JKM-03-2022-0198 Smith, A., Johnson, M., & Lee, P. (2024). Development of a multi-domain adaptive artificial general intelligence system using machine learning and expert systems. Journal of AI and Cognitive Science, 12(3), 72–84. Sutrisno, E. R., Kindangen, P., Sendow, G. M., & Jan, A. B. H. (2024). Impact of human capital and structural capital on competitive advantage: Evidence from Indonesian provincial government institutions. RGSA: Revista de Gestão Social e Ambiental, 18(12), e010228. https://doi.org/10.24857/rgsa.v18n12-037 Terzieva, M., & Morabito, V. (2016). Learning from experience: The project team is the key. Business Systems Research, 7(1), 1–15. https://doi.org/10.1515/bsrj-2016-0001 Thomas, A. (2024). Digitally transforming the organization through knowledge management: A socio-technical system (STS) perspective. European Journal of Innovation Management, 27(9), 437–460. https://doi.org/10.1108/EJIM-02-2024-0114 Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375 Tvlaei, R. (2023). Human-AI interaction in knowledge management. Strategic Management of Organizational Knowledge, 6(1), 11–21. (In Persian) Vargas-Hernández, J. G., Almanza Jiménez, R., Calderón Campos, P., Casas Cárdenaz, R., & Palomares Salceda, F. (2016). Performance y aprendizaje organizacional bajo el enfoque de las teorías organizacionales. Revista Internacional de Investigación y Docencia, 1(3), 5–16. https://doi.org/10.21892/24627593.170 Wang, F., & Siau, K. (2019). Artificial intelligence and big data analytics for smart healthcare. Journal of Computer Information Systems, 59(3), 278–285. https://doi.org/10.1080/08874417.2018.1552582 Wang, L., et al. (2023). IoT-driven knowledge management in supply chain optimization. IEEE Internet of Things Journal, 10(12), 10567–10578. https://doi.org/10.1109/JIOT.2023.3245678 Wang, P., & Lee, S. (2024). Personalized learning through AI: A transformative approach in education and knowledge management. Journal of Educational Technology and AI, 21(4), 45–60. Wang, Y., Li, X., & Zhao, J. (2024). Personalizing learning through AI: A new frontier for educational technology. Journal of AI in Education, 33(1), 120–137. Wiig, K. M. (1997). Knowledge management: An introduction and perspective. Journal of Knowledge Management, 1(1), 6–14. https://doi.org/10.1108/EUM0000000004578 Xie, G., Su, X., & Huang, M. (2024). Social media, knowledge management, and learning in farmer innovation. HighTech and Innovation Journal, 5(2), 295–311. https://doi.org/10.28991/hij-2024-05-02-06 Yousefi, K., & Hosseini, M. (2020). Neural networks and their application in analyzing knowledge management data. Scientific Journal of Organizational Management, 10(1), 75–88. (In Persian) Zakeri Dana, M. (2023). Three knowledge management trends in 2024. https://danakm.com (In Persian) Zamani, M., & Khamseh, A. (2025). Designing a conceptual framework for transferring advanced technologies in the Fifth Industrial Revolution: A thematic analysis approach. StrategicManagement of Organizational Knowledge, 8(1), 121–145. https://doi.org/10.47176/smok.2025.1854 (InPersian) Zaoui Seghroucheni, O., Al Achhab, M., & Lazaar, M. (2023). Systematic review on the conversion of tacit knowledge. Proceedings of the International Conference on Computer and Information Sciences, 1, 1–6. https://doi.org/10.1109/cist56084.2023.10409884 Zarei, N., Mohammadi, F., & Hosseini, R. (2020). Generations of knowledge management and its evolution. Knowledge Management Research Journal, 8(2), 15–32. (In Persian) Zgud, A., & Kulesza, K. (2024). Artificial intelligence: Concepts and interpretation. Fxyz, 22(24), 1–10. https://doi.org/10.52652/fxyz.22.24.1 Zhang, Y., & Zhan, X. (2021). A comprehensive framework of knowledge management: From theory to practice. Journal of Knowledge Management, 25(10), 2185–2204. https://doi.org/10.1108/JKM-01-2020-0102 Zhuravlev, D. V., & Smolin, V. S. (2024). Neural network structure design for AGI. Future, 2(1), 1–10. https://doi.org/10.20948/future-2024-2-3 | ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 2 |