- A. Moreira, P. Prats-iraola, M. Younis, G. Krieger, I.
- Hajnsek, and K. P. Papathanassiou, âA Tutorial on
- Synthetic Aperture Radar,â IEEE Geosci. Remote
- Sensing Mag., Vol. 1, No. 1, pp. 6-43, 2013.
- J. W. Goodman, âSome Fundamental Properties of
- Speckle,â Journal of the Optical Society of America,
- Vol. 66, No. 11, pp. 1145-1150, 1976.
- S. Joseph, K. Balakrishnan, M. B. Nair, and R. R.
- Varghese, âUltrasound Image Despeckling using
- Local Binary Pattern Weighted Linear Filtering,â
- International Journal of Information Technology and
- Computer Science, Vol. 5, No. 6, pp. 1-9, 2013.
- A. Moreira, âAn Improved Multilook Technique to
- Produce SAR Imagery,â In Proc. of the IEEE Int.
- radar conf., 1990, 57-63.
- F. P. Devries, âSpeckle Reduction in SAR Imagery
- by various Multi-look Techniques,â Netherlands
- Organization for Applied Scientific Research (TNO),
- Report. FEL-96-A015, 1998.
- F. Argenti, A. Lapini, and L. Alparone, âA Tutorial
- on Speckle Reduction in Synthetic Aperture Radar
- Images,â IEEE Geoscience and Remote Sensing
- Magazine, Vol. 1, No. 3, pp. 6-35, 2013.
- S. M. Kay, âFundamentals of Statistical Processing,â
- Volume I: Estimation Theory, Englewood Cliffs, NJ:
- Prentice Hall, 1993.
- A. Lopès, R. Touzi, and E. Nezry, âAdaptive Speckle
- Filters and Scene Heterogeneity,â IEEE Transactions
- on Geoscience and Remote Sensing, Vol. 28, No. 6,
- pp. 992-1000, 1990.
- A. Rajamani and V. Krishnaveni, âPerformance
- Analysis Survey of various SAR Image Despeckling
- Techniques,â Internatinal Journal of Computer
- Applications, Vol. 90, No. 7, pp. 5-17, 2014.
- A. Lopès, E. Nezry, R. Touzi, and H. Laur,
- âMaximum A Posteriori Speckle Filtering and First
- Order Texture Models in SAR Images,â In Proc. of
- the IEEE Int. Geosci. Remote Sensing Symp., 1990,
- -2412.
- A. Buades, B. Coll, and J. M. Morel, âA Non-Local
- Algorithm for Image Denoising,â In Proc. of the
- IEEE Conf. Computer Vision and Pattern
- Recognition, 2005, 60â65.
- G. Aubert and J. Aujol, âA Variational Approach to
- Removing Multiplicative Noise,â SIAM Journal on
- Applied Mathematics, Vol. 68, No. 4, pp. 925â946,
-
- C. A. Deledalle, L. Denis and F. Tupin, âIterative
- Weighted Maximum Likelihood Denoising with
- Probabilistic Patch-Based Weights,â IEEE
- Transactions on Image Processing, Vol. 18, No. 12,
- pp. 2661-2672, 2009.
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian,
- âImage Denoising by Sparse 3D Transform-domain
- Collaborative Filtering,â IEEE Transactions on
- Image Processing, Vol. 16, No. 8, pp. 2080â2095,
-
- E. O. Brigham and E. O. Brigham, âThe Fast Fourier
- Transform and its Applications, Volume I,
- Englewood Cliffs, NJ: Prentice Hall, 1988.
- A. Khmag, A. R. Ramli, and S. A. R. Al-Haddad,
- Hashim, S. J. B., âAdditive and Multiplicative noise
- Removal based on Adaptive Wavelet Transformation
- using Cycle Spinning,â American Journal of Applied
- Sciences, Vol. 11, No. 2, pp. 316-328, 2014.
- H. H. Arsenault and M. Levesque, âCombined
- Homomorphic and Local Statistics Processing for
- Restoration of Images Degraded by Signal
- Dependent Noise,â Applied optics, Vol. 23, No. 6,
- pp. 845-850, 1984.
- A. Y. Carmi, L. Mihaylovam, and S. J Godsill,
- âCompressed Sensing and Sparse Filtering,â New
- York: Springer, 2014.
- J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu,
- âFast Compressed Sensing SAR Imaging Based on
- Approximated Observation,â IEEE Journal of
- Selected Topics in Applied Earth Observations and
- Remote Sensing, pp. 1-12, 2014.
- H. Li, H. Du and W. Mei, âA Speckle Suppression
- SAR Imaging Method Based on Compressive
- Sensing,â In Proc. of the Int. Cong. Image and Signal
- Process., 2012, 283-287.
- I. M. Chen, J. Yang, W. P. Wang, and B. Sun, âSAR
- Image Despeckling by Selective 3D Filtering of
- Multiple Compressive Reconstructed Images,â Progress in Electromagnetics Research, Vol. 134, pp.
- -226, 2013.
- H. Zhao, J. F. Lopez, S. Li, Y. Cao, and Z. Qiao,
- âNoise synthetic aperture radar (SAR) imagery
- compressing and reconstruction based on compressed
- sensing,â In SPIE Defense, Security, and Sensing,
- Int. Soc. Optics and Photonics, pp. 87500N-87500N,
- May 2013.
- L. Guo and X.Wen, âSAR Image Compression and
- Reconstruction based on Compressed Sensing,â J.
- Inf. and Computational Sci., vol. 11, no. 2, pp. 573-
- , 2014.
- M. Cetin, I. Stojanovic, N. O. Onhon, K. Varshney,
- R. Samadi, S. Karl, W. C, and A. S. Willsky,
- âSparsity-driven Synthetic Aperture Radar Imaging:
- Reconstruction, Auto-focusing, Moving Targets, and
- Compressed Sensing,â IEEE Signal Process. Mag.,
- vol. 31, no. 4, pp. 27-40, Jul. 2014.
- A. Chatterjee and H. N. Moulick, âImage Filtering
- Noise Removal with Speckle Noise,â Int. J. Ethics in
- Eng. Manage. Educ. (IJEEE), pp. 21-26, Mar. 2014.
- S. Samadi, M. Ãetin, and M. A. Masnadi-Shirazi,
- âSparse Representation-based Synthetic Aperture
- Radar Imaging,â IET Radar, Sonar & Navigation,
- vol. 5, no 2, pp. 182-193, 2011.
- S. Roucart, âSparse Recovery Algorithms: Sufficient
- Conditions in terms of Restricted Isometry
- Constants,â In Approximation Theory XIII: San
- Antonio 2010, Springer New York, pp. 65-77, 2012.
- S. Uḡur and O. Arıkan, âSAR Image Reconstruction
- and Autofocus by Compressed Sensing,â Digital
- Signal Process., vol. 22, no. 6, pp. 923-932, 2012.
- S. S. Chen, D. L., Donoho, M. A. Saunders, âAtomic
- Decomposition by Basis Pursuit,â SIAM Review,
- vol. 43, no. 1, pp. 129-159, 2001.
- S. Bahmani, B. Raj, and P. T. Boufounos, âGreedy
- Sparsity-constrained Optimization,â J. Mach.
- Learning Research, vol. 14, no.1, pp. 807-841, 2013.
- T. Blumensath, M. Yaghoobi, and M. Davies,
- âIterative Hard Thresholding and L0 Regularization,â
- In Proc. IEEE int. conf. acoust. speech and signal
- process., pp. III-877âIII-880, 2007.
- J. A. Tropp and A. C. Gilbert, âSignal Recovery
- From Random Measurements via Orthogonal
- Matching pursuit,â IEEE Trans. Inf. Theory, vol. 53,
- no. 12, pp. 4655â4666, Dec. 2007.
- D. L. Donoho, âDenoising by Soft-Hresholding,â
- EEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627,
-
- M. Mansourpour, M. A. Rajabi, and J. A. R. Blais,
- âEffects and Performance of Speckle Noise
- Reduction Filters on Active Radar and SAR Images,â
- Int. Soc. Photogrammetry and Remote Sensing
- (ISPRS), pp. 14-16, Feb. 2006.
- I. M. R. De Leeuw and L. M. T. D. Carvalho,
- âPerformance Evaluation of several Adaptive
- Speckle filters for SAR imaging,â Simposio
- Brasileiro de Sensoriamento Remoto (SBSR), vol.
- , no. 2, pp. 7299-7305, Apr. 2009.
- M. Schlutz, âSynthetic Aperture Radar Imaging
- Simulated in MATLAB. Masterâs of Science Thesis
- in Geodesy Report,â California polytechnic state
- university, San Luis Obispo, 2009.
|