- Hurlbert, E.A., Whitley, R., Klem, M.D., Johnson, W., Alexander, L., D’Aversa, E., Ruault, J.M., Manfletti, Ch., Sippel, M., Caruana, J.N., Ueno, H., and Asakawa, H. “International space exploration coordination group assessment of technology gaps for LOX/Methane propulsion systems for the global exploration roadmap”; AIAA Space, 2016.
- Trejo, A., Garcia, C., and Choudhuri, A. “Experimental investigation of transient forced convection of liquid methane in a channel at high heat flux conditions”, Experimental Heat Transfer, Vol. 29, No. 1, pp.97-112, 2016.
- Hendricks, R.C., Graham, R.W., Hsu, Y., and Friedman, “Experimental heat transfer results for cryogenic hydrogen flowing in tubes at subcritical and supercritical pressures to 800 pounds per square inch absolute”, NASA TN D-3095, 1966.
- Spencer, R. and Rousar, D. “Supercritical oxygen heat transfer”, NASA CA-135339, 1977.
- Giovanetti, A., Spadaccini, L.J., and Szetela, “Deposite formation and heat-transfer characteristics of hydrocarbon rocket fuels”, J. Spacecraft and Rockets, Vol. 22, No. 5, pp.574-580, 1985.
- Liang, K., Yang, B., and Zhang, Z. “Investigation of heat transfer and coking charrcteristics of hydrocarbon fuels”, J. Propul. Power, Vol. 14, No. 5, pp.789-796, 1998.
- Votta, R., Battista, F., Ferraiuolo, M., Ronicioni, P., Salvatore, V., and Matteis, P. “Design of an experimental campaign on methane regenerative liquid rocket engine cooling system”, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2013.
- Votta, R., Battista, F., Salvatore, V., Pizzarelli, M., Leccese, G., Nasuti, F., and Meyer, S. “Experimental investigation of transcritical methane flow in rocket engine cooling channel”, Appl. Therm. Eng., Vol. 101, pp.61-70, 2016.
- Ricci, D., Natale, P., Battista, F., and Salvatore, V. “Experimental Investigation on the Transcritical Behaviour of Methane and Numerical Rebuilding Activity in the Frame of the Hyprob-Bread Project”, submitted for the the ASME Int. Mechanical Eng. Cong. & Exp., USA, 2015.
- Ricci, D., Natale, P., and Battista, F. “Experimental and Numerical Investigation on the Behavior of Methane in Supercritical Conditions”, Appl. Therm. Eng., Vol.107, pp.1334-1353, 2016.
- Pizzarelli, M., Nasuti, F., Votta, R., and Battista, F. “Validation of conjugate heat transfer model for rocket cooling with supercritical methane”, J. Propul. Power, pp.726-733, 2016.
- Pizzarelli, M., Nasuti, F., Votta, R., and Battista, F. ‘Assessment of a conjugate heat transfer model for rocket engine cooling channels fed with supercritical methane”, 51st AIAA/SAE/ASEE Joint Propulsion Conf., 2015.
- Pitla, S., Groll, E., and Ramadhyani, S. “New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2”, Int. J. Refrigeration, Vol. 25, No. 7, pp.887-895, 2002.
- Yoon, S., Kim, J., Hwang, Y., Kim, M., Min, K., and Kim, Y. “Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region”, Int. J. Refrigeration, Vol. 26, No. 8, pp.857-864, 2003.
- Dang, C. and Hihara, E. “In-tube cooling heat transfer of supercritical carbon dioxide, Part 1. Experimental measurement”, Int. J. Refrigeration, Vol. 27, No. 7, pp.736-747, 2004.
- Gnielinski, V. “New equations for heat and mass transfer in turbulent pipe and channel flow”. Int. Chem. Eng., Vol. 16, No. 2, pp.359-368, 1976.
- Mokry, S., Pioro, I., Farah, A., King, K., Gupta, S., Peiman, W., and Kirillov, P. “Development of supercritical water heat-transfer correlation for vertical bare tubes”, Nuclear Engineering and Design, Vol. 241, No. 4, pp.1126-1136, 2011.
- Wang, Y., Hua, Y., and Meng, H. “Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane”, J. Thermophys Heat Transfer, Vol. 24, No. 3, pp.490-500, 2010.
- Jackson, J. and Hall, W. “Forced convective heat transfer to fluids at supercritical pressure” Turbulent Forced Convection in Channels and Bundles, pp.563-611, 1979.
- Ruan, B., Gao, X., and Meng, H. “Numerical modeling of turbulent heat transfer of a nanofluid at supercritical pressure”, Appl. Therm. Eng., Vol. 113, pp.994-1003, 2017.
- Bishop, A., Sandberg, R., and Tong, L. “Forced-convection heat transfer to water at near-critical temperatures and supercritical pressures”, Westinghouse Electric Corp., Pittsburgh, Pa. Atomic Power Div, WCAP-5449; CONF-650603-1, 1964.
- Pizzarelli, M. “A CFD-derived correlation for methane heat transfer deterioration”, Numer. Heat Transfer, Part A, Vol. 69, No. 3, pp.242-264, 2016.
- Arun, M., Akhil, J., Noufal, K., Baby, R., Babu, D., and Prakash, M. “Effect of aspect ratio on supercritical heat transfer of cryogenic methane in rocket engine cooling channels”, Frontiers in Heat and Mass Transfer, Vol. 8, 2017.
- Wang, Y.Z. “Numerical investigation of supercritical turbulent heat transfer of cryogenic-propellant methane in a horizontal tube (In Chinese)”, Master Dissertation, Zhejiang University, 2010.
- Van Doormal, J.P. and Raithby, G.D. “Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numer. Heat Transfer, Vol. 7, No. 2, pp.147-163, 1984.
- Rhie, C. and Chow, W. “Numerical Study of the Turbulent FlowPast an Airfoil with Trailng Edge Separation”, AIAA Journal, Vol. 21, No. 11, pp.1525-1532, 1983.
- Spalart, P. and Allmaras, S. “A one-equation turbulence model for aerodynamic flows”, 30th aerospace science meeting and exhibit, 1992.
- Kunz, O. and Wagner, W. “The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004”, J. Chem. Eng. Data Vol. 57, No. 11, pp.3032-3091, 2012.
- Younglove, B.A. and Ely, J.F. “Thermophysical properties of fluids. II. methane, ethane, propane, isobutane and normal butane”, J. Phys. Chem. Ref. Data, Vol. 16, No. 4, pp.577-798, 1987.
- Quiñones-Cisneros, S. and Deiters, U. “Generalization of the friction theory for viscosity modeling”, J. Phys. Chem. B, Vol. 110, No. 25, pp.12820-12834, 2006.
- Versteeg, H. and Malalasekera, W. “An introduction to computational fluid dynamics: the finite volume method”, Pearson Education, 2007.
- Dittus, F. and Boelter, L. Publications on Engineering, Vol. 2. University of California at Berkeley, Berkeley, CA, 443-461, 1930.
- Taylor, M. “Correlation of local heat-transfer coefficients for single-phase turbulent flow of hydrogen in tubes with temperature ratios to 23”, NASA TN D-4332, 1968.
- Zhao, C. and Jiang, P. “Experimental study of in-tube cooling heat transfer and pressure drop characteristics of R134a at supercritical pressures”, Exp. Therm. Fluid Sci., Vol. 35, No. 7, pp.1293-1303, 2011.
|