تعداد نشریات | 38 |
تعداد شمارهها | 1,248 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 7,976,895 |
تعداد دریافت فایل اصل مقاله | 4,765,993 |
بررسی تجربی تأثیر یک روزنه نوین جت نخودی بر عملکرد حرارتی جت های تزریقشده در یک جریان عرضی | ||
مکانیک سیالات و آیرودینامیک | ||
مقاله 3، دوره 7، شماره 2 - شماره پیاپی 22، اسفند 1397، صفحه 33-45 اصل مقاله (816.68 K) | ||
نویسندگان | ||
یونس پولادرنگ1؛ مهدی رمضانی زاده* 2 | ||
1مرکز تحصیلات تکمیلی، دانشکاه هوایی شهید ستاری | ||
2دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری | ||
تاریخ دریافت: 23 دی 1396، تاریخ بازنگری: 19 دی 1397، تاریخ پذیرش: 12 دی 1397 | ||
چکیده | ||
در خنککاری لایهای، هوای خنککننده از طریق جتهایی روی سطح تزریق میشود تا لایهای محافظ در برابر گازهای دما بالا فراهم شود. عملکرد خنککاری لایهای تا حد زیادی تحت تأثیر شکل روزنه جتها قرار دارد. و لذا بهینهسازی و اصلاح شکل هندسی روزنه جت برای دستیابی به عملکرد خنککاری بهتر ضروری است. در این پژوهش، عملکرد خنککاری لایهای هندسه جدید جتهای استوانهای ناقص (نخودی) بهصورت تجربی با استفاده از روش دما نگاری مادونقرمز بررسی شده است. آزمایشها در حالت انتقال حرارت پایا در عدد رینولدز جریان اصلی براساس قطر معادل جت (Rejet) 10,000 روی صفحه تخت انجام شده است. اندازهگیریها در چهار نسبت دمش (M=ρjetVjet/ρ∞V∞) مختلف 4/0، 5/0، 7/0 و 8/0 انجام شدهاند. نتایج حاصل نشان میدهد که هندسه پیشنهادی دارای نسبت دمش بهینه 7/0 در زاویه تزریق جت 30 درجه است و در نسبت دمش یکسان، اثربخشی خنککاری لایهای هندسه جدید بیشتر است. بهعبارت دیگر، با استفاده از همان مقدار نرخ جریان جرمی تزریقشده، توزیع یکنواختتری از لایه سیال خنککننده حاصل میشود. | ||
کلیدواژهها | ||
اثربخشی خنک کاری لایه ای؛ هندسه جدید روزنه جت؛ روزنه جت نخودی؛ آزمایش تجربی؛ تونل باد | ||
عنوان مقاله [English] | ||
Experimental Investigation of the Effect of a Novel Pea Jet Hole on Thermal Behavior of Jets Injected into a Crossflow | ||
نویسندگان [English] | ||
younes poladrang1؛ mahdi ramezani zade2 | ||
1satari | ||
2satari | ||
چکیده [English] | ||
In film cooling, coolant air is injected over the surface to provide a protective cool film against the high temperature gases. Film-cooling performance is largely influenced by the jet hole shape. And thus optimizing the hole shape configuration is necessary to achieve better cooling performance. The present study investigated the cooling effectiveness of the novel incomplete cylindrical jet hole (pea jet hole) experimentally, using an infrared thermography method. Steady state heat transfer experiments were performed at free stream Reynolds number, based on jet hole diameter of 10,000, over a flat plate. Measurements were carried out at four blowing ratios (M=ρjetVjet/ρ∞V∞) of 0.4, 0.5, 0.7, and 0.8. Out results show that the novel pea jet hole has an optimum blowing ratio of 0.7 and at the same blowing ratio, in comparison to the cylindrical jet hole, the cooling effectiveness of the new geometry is higher. Another words applying the same amount of injected fluid, the coolout fluid is distributed more uniformly over the surface. | ||
کلیدواژهها [English] | ||
Film Cooling Effectiveness, Novel Jet Hole Geometry, Pea Jet Hole, Experimental Test, Wind Tunnel | ||
مراجع | ||
Bazdidi-Tehrani, M.J.F. and Mousavi, S.M. Bunker, R.S. “A Review of Shaped Hole Turbine
Film- Cooling Technology”, J. Heat Trans., Vol. 127, No.4, pp. 441–453, 2005. 12. Asghar, F.H. and Hyder, M.J. “Computational Study of Film Cooling from Single and Two Staggered Rows of Novel Semi-Circular Cooling Holes Including Coolant Plenum”, Energy Conv. Manag., Vol. 52, No.1, pp. 329-334, 2011. 13. Dai, P. and Lin, F. “Numerical Study on Film Cooling Effectiveness from Shaped and Crescent Holes”, Heat Math Transf., Vol. 47, No.2, pp. 147- 154, 2011. 14. Islami, S.B., Tabrizi, S.P.A., Jubran, B.A., and Esmaeilzadeh, E. “Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling”, Heat Transf. Eng., Vol. 31, No.10, pp. 889-906, 2011. 15. Montomoli, F., Ammaro, A.D., and Uchida, S. “Numerical and Experimental Investigation of a New Film Cooling Geometry with High P/D Ratio”, Int. J. Heat Mass Trans., Vol. 66, No. 11, pp. 366-375, 2013. 16. Yusop, N.M., Ali, A.H., and Abdullah, M.Z. “Computational Study of a New Scheme for A Fi lm-Cooling Hole on Convex Surface of Turbine Blades,” Int. Commun. Heat Mass Trans., Vol. 43, No. 4, pp. 90-99, 2013. 17. Salimi, M.R., Ramezanizadeh, M., and Taeibi- Rahni, M., and Farhadi-Azar, R. “Film Cooling Effectiveness Enhancement Applying another Jet in the Upstream Neighbor of the Main Jet,Using LES Approach”, J. Appl. Fluid Mech., Vol. 9, No. 1, pp. 33-42, 2016. 18. Baheri Islami, S. and Jubran, B.A. “The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade from Trenched Shaped Holes”, Heat Math Trans., Vol. 48, No. 5, pp. 831–840, 2012. 19. Liu, C., Zhu, H., Zhang, Z., and Xu, D., “Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Hole Pitches”, Int. J. Heat Mass Trans., Vol. 55, No.23-24 , pp. 6832–6845, 2012. 20. York, W. D. and Leylek, J. H. “Leading-Edge Film-Cooling Physics—Part III: Diffused Hole Effectiveness”, ASME, Vol. 125, No. 2, pp. 252– 259, 2003. 21. Wang, T. and Li, X. “Mist Film Cooling Simulation at Gas Turbine Operating Conditions”, Int. J. Heat Mass Trans., Vol. 51, pp. 5305–5317, No. 21-22, 2008. 22. Baheri, S., AlaviTabrizi, S.P., and Jubran, B.A. “Film Cooling Effectiveness from Trenched Shaped and Compound Holes”, Heat Mass Trans., Vol. 44, No. 8, pp. 989-998, 2008. 23. Elnady, T., Hassan, I., Kadem, L., and Lucas, T. “Cooling Effectiveness of Shaped Film Holes for Leading Edge”, Exp. Therm. Fluid Sci., Vol. 44, No. 1, pp. 649-661, 2013. 24. Liu, C., Zhu, H., Zhang, X., Xu, D., and Zhang, Z. “Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes with Different Radial Angles” , Heat Mass Transf., Vol. 71, No. 4, pp. 615–625, 2014. 25. Lee, K., Choi, D., and Kim, K., “Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model”, Int. J. Therm. Sci., Vol. 73, No. 11, pp. 69-78, 2013. 26. Moon, Y., Park, S.S., Park, J.S., and Kwak, J.S. “Effect of Angle Between the Primary and Auxiliary Holes of an Anti-Vortex Film Cooling Hole”, Asia-Pacific Int. Symp. Aerosp. Technol. APISAT2014, Vol. 99, pp. 1492-1496, 2015. 27. Farhadi-Azar, R., Ramezanizadeh, M., Taeibi- Rahni, M., and Salimi, M. “Compound Triple Jets Film Cooling Improvements via Velocity and Density Ratios: Large Eddy Simulation”, J. Fluids Eng., Vol. 133, No. 3, p. 31202, 2011. 28. Ramesh, S., Gomez, D., Ekkad, S.V., and Anne, M. “Analysis of Film Cooling Performance of Advanced Tripod Hole Geometries with and without Manufacturing Features”, Int. J. Heat Mass Trans., Vol. 94, No. 3, pp. 9-19, 2016. 29. Chen, S.P., Chyu, M.K., and Shih, T.I. “Effects of Upstream Ramp on the Performance of Film Cooling”, Int. J. Therm. Sci., Vol. 50, No. 6, pp. 1085-1094, 2011. 30. Rigby, L.D. and Heidmann, J.D. “Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole” ASME Turbo Expo 2008: Power for Land, Sea, and Air, Vol. 4, pp. 1161-1174, 2008. 31. An, B.T., Liu, J.J., Zhang, C., and Zhou, S.J. “Film Cooling of Cylindrical Hole with a Downstream Short Crescent-Shaped Block”, J. Heat Trans., Vol. 135, No. 3, p. 31702, 2013. 32. Ramezanizadeh, M. and Pouladrang, Y. “Experimental Investigation of Film Cooling Effectiveness Applying a Novel Integrated Compound Jets Design for the Jet Holes”, Modares Mech. Eng., Vol. 18, No. 3, pp. 302-310, 2018. 33. Pouladrang, Y. “Experimental Study of the Effects of Jet Hole Geometry on the Film Cooling Effectiveness in Gas Turbines”, MSc Thesis, Graduate Center, Shahid Sattari Aeronautical University of Science & Technology, 2017. 34. Moffat, R.J. “Describing the Uncertainties in Experimental Results”, Exp. Therm. Fluid Sci., Vol. 1, No. 1, pp. 3-17, 1988. 35.Dhungel, A., Lu, Y., Phillips, W., Srinath, E., and
James, H. “Film Cooling from a Row of Holes Supplemented with Antivortex Holes”, J. Turbomach., Vol. 131, No. 2, p. 21007, 2009. 36. Lawson, S.A., and Thole, K.A. “Effects of Simulated Particle Deposition on Film Cooling”, ASME, Vol. 133, No. 2, p. 21009, 2011. 37. Kunze, M., Preibisch, S., and Landis, K. “A New Test Rig for Film Cooling Experiments on Turbine Endwalls”, Proc. ASME Turbo Expo., Vol. 4, pp. 989-998, 2008. Johnson, B., Tian, W., Zhang, K., and Hu, H. “An
Experimental Study of Density Ratio Effects on the Film Cooling Injection from Discrete Holes by Using PIV and PSP Techniques”, Int. J. Heat Mass Trans., Vol. 76, No. 9, pp. 337–349, 2014. 39. Sinha, A. K., Bogard, D. G., and Crawford, M. E. “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio”, J. Turbomach., Vol. 113, No. 3, pp. 442–449, 1991. 40. Rallabandi, A.P., Grizzle, J., and Han, J. “Effect of Upstream Step on Flat Plate Film-Cooling Effectiveness Using PSP”, J. ASME Turbomach., Vol. 133, No. 4, p. 041024, 2011. | ||
آمار تعداد مشاهده مقاله: 501 تعداد دریافت فایل اصل مقاله: 232 |