تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,071 |
تعداد دریافت فایل اصل مقاله | 4,706,662 |
ارتباط احتمال کشف، ظرفیت و هزینه نهان نگاری با مدل سازی نهان کاو | ||
پدافند الکترونیکی و سایبری | ||
مقاله 7، دوره 6، شماره 3 - شماره پیاپی 23، آذر 1397، صفحه 81-94 اصل مقاله (1.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
ایمان غلامپور* 1؛ روح الله امیری2 | ||
1صنعتی شریف | ||
2دانشگاه صنعتی شریف | ||
تاریخ دریافت: 02 دی 1396، تاریخ بازنگری: 19 اردیبهشت 1397، تاریخ پذیرش: 06 خرداد 1397 | ||
چکیده | ||
قابلیت کشف آماری یک نهانکاو بیانکننده توانایی آن در تشخیص تصاویر پاک از تصاویر درج شده است. نهاننگاری بهینه بهگونهای باید طراحی شود که نهانکاو نتواند تصاویر درجشده را تشخیص دهد. به همین دلیل، طراحی یک الگوریتم نهاننگاری بر مبنای کاهش قابلیت کشف آماری نهانکاو، هدفی مهم در نهاننگاری است. با این حال، ایجاد رابطه دقیق بین هزینه تغییر تصویر و قابلیت کشف آماری در حالت کلی مسئلهای حل نشده است. در این مقاله با مدلسازی نهانکاو توسط مدلهای گرافیکی خاصی به نام مدلهای موضوعی، به تخمین احتمال خطای نهانکاو بهعنوان معیاری از قابلیت کشف آماری رسیدهایم. همچنین، بر اساس این معیار، تعریف جدیدی از ظرفیت نهاننگاری ارائه دادهشده و رابطه آن را با هزینه تغییر تصویر بررسی گردیده است. همچنین، نشان داده شده است که روابط ریاضی حاصل بین پارامترهای نهاننگار و نهانکاو با ملاکهای کلاسیک نظیر PSNR همخوانی دارد. سپس از رابطه هزینه تغییر تصویر و قابلیت کشف آماری به یک الگوریتم نهاننگاری مناسب رسیدهایم. با آزمون روی دادگان مناسب نشان داده شده است که الگوریتم حاصل در زمره بهترین الگوریتمهای قابل تحلیل ریاضی است. لازم به ذکر است که تمرکز این مقاله روی حل یک مسئله تئوریک و بازتعریف مفاهیم نهاننگاری است بهطوریکه روش بهینه درج برمبنای بهینهسازی فریب نهانکاو انجام گردد و نه بهصورت کلاسیک برمبنای کاهش فاصله تصویر پوشش و تصویر درجشده. با اینحال عملاً به بهبود دقت اندکی در حدود 0.5 % نیز حاصل شده است. | ||
کلیدواژهها | ||
نهاننگاری؛ مدل نهانکاوی؛ ظرفیت نهاننگاری؛ هزینه تغییر پیکسل؛ قابلیت کشف آماری؛ مدلهای موضوعی | ||
عنوان مقاله [English] | ||
Relating the Detection Rate, Capacity and the Cost of Steganography by Steganographer Modeling | ||
نویسندگان [English] | ||
Iman Gholam Pour1؛ Rouhollah Amiri2 | ||
چکیده [English] | ||
Statistical detectablity of a steganalyser declares its ability to distinguish between cover and stego images. Optimum steganographer must be designed to confuse the corresponding steganalysers in detecting stego images. Thus, designing a steganographic algorithm based on reducing statistical detectability is of great importance. Unfortunately establishing a perfect relation between pixel cost and statistical detectability is still an open problem. In this paper, we have modelled steganalyser by special graphical models, called topic models, to estimate the error rate of a steganalyser in terms of the steganographic pixel cost. Morover, we have redefined the steganographic capacity and pixel cost based on such models. It is also shown that the new critera are compatible with classical ones, like PSNR. Then, an algorithm is designed as per such criteria. It is shown empirically that the presented algorithm is comparable to the best analytically designed algorithms presented so far. It is worth mentioning that the paper is focused on establishing a mathematical basis for the relation between the steganalyzer error and pixel cost and not improving the current algorithms. Nonetheless, as compared to the rivals, a small improvement, about 0.5% in steganalysis error, has also been achieved. | ||
کلیدواژهها [English] | ||
Steganography, Steganalysis Model, Capacity, Pixel Cost, Statistical Detectability, Topic Models | ||
مراجع | ||
[1] Wikipedia Encyclopedia, “Steganography,” [Online]. Available: http://en.wikipedia.org/wiki/Steganography. [2] G. J. Simmons, “The prisoner’s problem and the subliminal channel,” Advances in Cryptology, CRYPTO ’83, pp. 51–67, 1983. [3] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler, J. Fridrich, and T. Pevný, “Moving steganography and steganalysis from the laboratory into the real world,” 1st ACM IH&MMSec. Workshop, Montpellier, France, 2013. [4] C. Cachin, “An information-theoretic model for steganography,” Information and Computation, vol. 192, no. 1, pp. 41–56, 2004. [5] J. Fridrich, “Steganography in Digital Media: Principles,” Algorithms, and Applications. Cambridge University Press, 2009. [6] R. Böhme, “Advanced Statistical Steganalysis,” Springer Berlin Heidelberg, 2010. [7] B. Li, J. He, J. Huang, and Y. Q. Shi, “A survey on image steganography and steganalysis,” Journal of Information Hiding and Multimedia Signal Processing, vol. 2, no. 2, pp. 142–172, April 2011. [8] T. Pevn´y and J. Fridrich, “Benchmarking for steganography,” in 10th International Workshop on Information Hiding, vol. LNCS 5284, Springer Berlin Heidelberg, pp. 251–267, 2008. [9] A. D. Ker, T. Pevný, J. Kodovský, and J. Fridrich, “The Square Root Law of steganographic capacity,” In Proceedings of the 10th ACM Multimedia & Security Workshop, pp. 107–116, Oxford, UK, 2008. [10] T. Filler, A. D. Ker, and J. Fridrich, “The Square Root Law of steganographic capacity for Markov covers,” In Proceedings SPIE, Electronic Imaging, Security and Forensics of Multimedia XI, vol. 7254, pp. 1–11, San Jose, CA, 2009. [11] T. Filler and J. Fridrich, “Fisher information determines capacity of ԑ-secure steganography,” In Information Hiding, 11th International Workshop, vol. 5806 LNCS, pp. 31–47, Darmstadt, Germany, 2009. [12] A. D. Ker, “Estimating steganographic fisher information in real images,” in 11th International Workshop on Information Hiding, vol. LNCS 5806, Springer Berlin Heidelberg, pp. 73–88, 2009. [13] N. Provos, “Defending against statistical steganalysis,” in 10th USENIX Security Symposium, pp. 323–335, 2001. [14] A. Westfeld, “F5—a steganographic algorithm,” in 4th International Workshop on Information Hiding, vol. LNCS 2137, Springer Berlin Heidelberg, pp. 289–302, 2001. [15] X. Zhang, S. Wang, and K. Zhang, “Steganography with least histogram abnormality,” in Second International Workshop on Mathematical Methods, Models, and Architectures for Computer Network Security, vol. LNCS 2776, Springer Berlin Heidelberg, pp. 395–406, 2003. [16] P. Sallee, “Model-based steganography,” in Second International Workshop on Digital Watermarking, vol. LNCS 2939, Springer Berlin Heidelberg, pp. 154–167, 2003. [17] A. Sarkar, K. Solanki, U. Madhow, S. Chandrasekaran, and B. Manjunath, “Secure steganography: Statistical restoration of the second order dependencies for improved security,” in IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. II–277– 280, 2007. [18] J. Kodovsk and J. Fridrich, “On completeness of feature spaces in blind steganalysis,” in Proceedings of the 10th ACM multimedia workshop on Multimedia and security, pp. 123–132, 2008. [19] V. K. Chonev and A. D. Ker, “Feature restoration and distortion metrics,” in Media Watermarking, Security, and Forensics XIII, Proc. SPIE, vol. 7880, pp. 0G01–0G14, 2011. [20] R. Crandall, “Some notes on steganography,” Steganography Mailing List, 1998. [21] F. Galand, and G. Kabatiansky, “Information hiding by coverings,” In Proceedings ITW2003, pp. 151-154, 2003. [22] M. van Dijk, and F. Willems, “Embedding information in grayscale images,” In Proceedings of the 22nd Symposium on Information and Communication Theory, pp. 147–154, 2001. [23] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE Trans. Inf. Forensics Security, vol. 3, pp. 390-394, 2006. [24] J. Fridrich and T. Filler, “Practical methods for minimizing embedding impact in steganography,” in Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, Proc. SPIE, vol. 6505, pp. 0201–0215, 2007. [25] T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image models to perform highly undetectable steganography,” in 12th International Workshop on Information Hiding, vol. LNCS 6387, pp. 161–177, 2010. [26] T. Filler and J. Fridrich, “Gibbs construction in steganography,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 4, pp. 705–720, 2010. [27] F. Huang, J. Huang, and Y.-Q. Shi, “New channel selection rule for jpeg steganography,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 4, pp. 1181–1191, 2012. [28] L. Guo, J. Ni, and Y. Q. Shi, “An efficient jpeg steganographic scheme using uniform embedding,” in IEEE International Workshop on Information Forensics and Security, pp. 169–174, 2012. [29] V. Holub, and J. Fridrich, “Designing steganographic distortion using directional filters,” in IEEE Workshop on Information Forensic and Security, pp. 234–239, 2012. [30] V. Holub and J. Fridrich, “Digital image steganography using universal distortion,” in Proceedings of the first ACM workshop on Information hiding and multimedia security, pp. 59–68, 2013. [31] J. Fridrich and J. Kodovský, “Multivariate gaussian model for designing additive distortion for steganography,” in IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, pp. 2949–2953, 2013. [32] J. Fridrich, M. Goljan, D. Soukal, and P. Lisonek, “Writing on wet paper,” In IEEE Transactions on Signal Processing, Special Issue on Media Security, vol. 53, pp. 3923–3935, 2005. [33] Y. Kim, Z. Duric, and D. Richards, “Modified matrix encoding technique for minimal distortion steganography,” in 8th International Workshop on Information Hiding, vol. LNCS 4437, Springer Berlin Heidelberg, pp. 314–327, 2007. [34] R. Zhang, V. Sachnev, and H. Kim, “Fast bch syndrome coding for steganography,” in 11th International Workshop on Information Hiding, vol. LNCS 5806, Springer Berlin Heidelberg, pp. 48–58, 2009. [35] W. Zhang, X. Zhang, and S. Wang, “Near-optimal codes for information embedding in gray-scale signals,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1262–1270, 2010. [36] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distortion in steganography using syndrome-trellis codes,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3-2, pp. 920–935, 2011. [37] T. Pevn´y, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel adjacency matrix,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2, pp. 215–224, 2010. [38] J. Fridrich and J. Kodovsk´y, “Rich models for steganalysis of digital images,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868– 882, 2012. [39] P. Moulin and Y. Wang, “New results on steganographic capacity,” In Proceedings of the Conference on Information Sciences and Systems, CISS, Princeton, NJ, 2004. [40] T. Filler, “Imperfect stegosystems-asymptotic laws and near-optimal practical constructions,” Dissertation, Binghamton University State University of New York, 2011. [41] J. Fridrich, “Effect of cover quantization on steganographic fisher information,” IEEE Transactions on Information Forensics and Security, 2013. [42] T. Pevný, J. Fridrich, and A. D. Ker, “From blind to quantitative steganalysis,” IEEE Transactions on Information Forensics and Security, vol. 7, pp. 445–454, 2012. [43] C. Corporation, “Corel stock photo library 3, Ontario, Canada.
[44] J. Zhang, I. Cox, and G. Doerr, “Steganalysis for LSB matching in images with high frequency noise,” IEEE 9th Workshop on Multimedia Signal Processing, pp. 385–388, 2007. [45] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003. [46] V. Sedighi, R. Cogranne, and J. Fridrich, “Content-Adaptive Steganography by Minimizing Statistical Detectability,” IEEE TIFS, vol. 11, no. 2, pp. 221-234, 2016. [47] M. Shamalizade, Z. Nowrouzi, M. Sabzinejad, and M. Karami, “Adaptive Image Steganography based on Graph Entropy with Improved Securitye Effectivity,” Advanced Defence Sci. & Tech., Journal, 5 July 2017. (In Persian) [48] J. Kodovský, J. Fridrich, and V. Holub, “Ensemble classifiers for steganalysis of digital media,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 432–444, 2012. [49] X. Wang, C. Chang, C. Lin, and M. Chu Li, “A novel multi-group exploiting modification direction method based on switch map,” Signal Process, vol. 92, pp. 1525–1535, 2012. | ||
آمار تعداد مشاهده مقاله: 456 تعداد دریافت فایل اصل مقاله: 296 |