تعداد نشریات | 38 |
تعداد شمارهها | 1,252 |
تعداد مقالات | 9,075 |
تعداد مشاهده مقاله | 8,166,843 |
تعداد دریافت فایل اصل مقاله | 4,928,540 |
بررسی تلفات شبکه و هزینه احداث نیروگاههای تولید پراکنده بر اساس الگوریتم ژنتیک چند هدفه و الگوریتم بازار بورس | ||
علوم و فناوریهای پدافند نوین | ||
مقاله 5، دوره 10، شماره 3 - شماره پیاپی 37، مهر 1398، صفحه 251-265 اصل مقاله (1.72 M) | ||
نوع مقاله: قدرت - حفاظت | ||
نویسندگان | ||
محمدرضا علیزاره پهلوانی* 1؛ مجید خسروی2 | ||
1دانشگاه صنعتی مالک اشتر | ||
2دانشگاه صنعتی مالک اشتر | ||
تاریخ دریافت: 20 فروردین 1397، تاریخ بازنگری: 30 شهریور 1397، تاریخ پذیرش: 22 دی 1397 | ||
چکیده | ||
ایران، همچون تمامی کشورهای جهان، به جهت کاهش استفاده از سوختهای فسیلی و نشر کربن در محیطزیست، به سمت استفاده از منابع انرژی تولید پراکنده در حرکت است. منابع انرژی تجدیدپذیر بخش عمدهای از DGها را تشکیل میدهند. هدف اصلی پروژههای صنعت برق در زمینه برنامهریزی و توسعه DGها، ترکیب بهینه این منابع در کنار یکدیگر است. مطالعات جامع و هدفمندی نیاز است تا عملکرد DGها در شبکه قدرت را شناخته و از تأثیرات سوء آنها جلوگیری کند. بهعنوانمثال مسئلهی جایابی و تعیین ظرفیت DGها، در زمانی که تعداد زیادی از منابع تولید پراکنده به شبکه متصل باشند، بهمراتب مشکلسازتر و پیچیدهتر میشود. به جهت حل مشکلاتی از این قبیل و کم کردن موارد و اثرات ناخواسته استفاده از DGها، الگوریتمهای بهینهسازی در طول یک دهه گذشته رشد و توسعه چشمگیری داشتند. در این مقاله ضمن تشریح دو روش موردنظر، به مقایسه نسخه بهینهشده الگوریتم ژنتیک با مرتبسازی نامغلوب و الگوریتم بازار بورس بر مبنای سیستمهای موجود در MATPOWER در جهت پیدا کردن یکراه حل سریع و قابلاعتماد برای طرحریزی بهینه منابع تولید پراکنده پرداخته شده و نتایج حاصل تشریح گردیده است. | ||
کلیدواژهها | ||
تولید پراکنده؛ الگوریتم ژنتیک غیر مغلوب؛ الگوریتم بازار بورس؛ بهینهسازی | ||
عنوان مقاله [English] | ||
Examining the Network Losses and Costs of Construction of Distributed Generation Plants Based on Multi-Objective Genetic Algorithm and Exchange Market Algorithm | ||
نویسندگان [English] | ||
mohammad reza Alizadeh Pahlavani1؛ Majid Khosravi2 | ||
1Malek Ashtar University of Technology | ||
2Malek Ashtar University of Technology | ||
چکیده [English] | ||
IRAN and the world are moving away from central energy resource to distributed generation (DG) in order to lower carbon emissions. Renewable energy resources comprise a big percentage of DGs and their optimal integration to the grid is the main attempt of planning/developing projects with in electricity network. Feasibility and thorough conceptual design studies are required in the planning/development process as the most of the electricity networks are designed in the passed decades, not considering the challenges imposed by DGs. As an example, the issue of optimal placement and the capacity of DG’s become problematic when large amount of dispersed generation is connected to a distribution network. Therefore, optimized algorithms have been developed over the last decade in order to do the planning purpose optimally such as to alleviate the unwanted effects of DGs. In this article, after explaining the two proposed methods, the modified non-sorting genetic algorithm (NSGA)’s and Exchange Market Algorithm (EMA)’s results, based on MATPOWER’s systems have been compared, in order to find a fast and reliable solution to optimum planning. | ||
کلیدواژهها [English] | ||
Distributed Generation, Non-Dominated Genetic Algorithm, Exchange Market Algorithm, Optimization | ||
مراجع | ||
[1] Ruiz-Romero1, S.; Colmenar-Santos, A. “Integration of Distributed Generation in the Power Distribution Network: The Need for Smart Grid Control Systems, Communication and Equipment for a Smart City”; Renew. Sust. Energ. Rev. 2014, 38, 223–234. [2] Zahlay, D.; Santos, S. F.; Bizuayehu, A. W. “DG Investment Planning Analysis with Renewable Integration and Considering Emission Costs”; IEEE Int. Conf. Computer as a Tool (EUROCON), 2015. [3] Celli, G.; Ghiani, E.; Mocci, S.; Pilo, F. “A Multiobjective Evolutionary Algorithm for the Sizing and Siting of Distributed Generation”; IEEE Trans. Power Syst. 2005, 20, 750-757. [4] Acharya, N.; Mahat, P.; Mithulananthan, N. “An Analytical Approach for DG Allocation in Primary Distribution Network”; Int. J. Electr. Power Energy Syst. 2006, 28, 669-678. [5] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”; IEEE Trans. Evol. Comput. 2002, 6, 182-197. [6] Ghorbani, N.; Babaei, E. “Exchange Market Algorithm”; Appl. Soft. Comput. 2014, 19, 177-187. [7] Ghorbani, N.; Babaei, E. “Exchange Market Algorithm for Economic Load Dispatch”; Adv. Mater. Res-Switz 2016, 75, 19-27. [8] Willis, H. L. “Power Distribution Planning Reference Book, Second Edition”; ABB Inc. Raleigh, North Carolina, U.S.A. 2004. [9] Ziadi, Z.; Taira, S.; Oshiro, M.; Funabashi, T. “Optimal Power Scheduling for Smart Grids Considering Controllable Loads and High Penetration of Photovoltaic Generation”; IEEE Trans. Smart Grid 2014, 5, 2350-2359 [10] Facci, A.; Andreassi, L.; Ubertin, S. “Optimization of CHCP (Combined Heat Power and Cooling) Systems Operation Strategy Using Dynamic Programming”; Energy 2014, 66, 387-400. [11] Cartaa, J. A.; Ramírezb, P.; Velázquezc, S. “A Review of Wind Speed Probability Distributions Used in Wind Energy Analysis: Case studies in the Canary Islands”; Renew. Sust. Energ. Rev. 2009, 13, 933-955. [12] Celik, A. N. “A Statistical Analysis of Wind Power Density Based on the Weibull and Rayleigh Models at the Southern Region of Turkey”; Renew. Energ. 2004, 29, 593-604. [13] Zimmerman, R. D.; Murillo-Sánchez, C. E.; Thomas, R. J. “Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education”; IEEE Trans. Power Syst. 2011 , 26, 12-19. [14] Shu, Zh.; Jirutitijaroen, P. “Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources”; IEEE Trans. Power Syst. 2011, 26, 2066-2073. | ||
آمار تعداد مشاهده مقاله: 627 تعداد دریافت فایل اصل مقاله: 287 |