تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,038 |
تعداد دریافت فایل اصل مقاله | 4,706,646 |
یک الگوریتم یکپارچه برای آشکارسازی بهینه اهدافِ ضعیف راداری پنهانشده در گلبرگهای جانبی یک هدف بزرگ | |
پدافند الکترونیکی و سایبری | |
مقاله 8، دوره 6، شماره 4 - شماره پیاپی 24، اسفند 1397، صفحه 91-104 اصل مقاله (890.69 K) | |
نوع مقاله: مقاله پژوهشی | |
نویسندگان | |
رضا کیوان شکوه* ؛ مجید اخوت | |
ihu | |
تاریخ دریافت: 20 دی 1396، تاریخ پذیرش: 06 خرداد 1397 | |
چکیده | |
هدف ضعیف در رادار به اهدافی گفته میشود که بهصورت عادی سطح مقطع راداری کمی داشته باشد و یا اینکه بهصورت عمدی میزان سیگنال برگشتی از این اهداف کاهش یافته باشد. برای آشکارسازی یک هدفِ ضعیف، الگوریتمهای مختلفی وجود دارد. اما در شرایطی که این هدف در مجاورت یک هدف بزرگ باشد، لوبهای جانبی خروجی فیلترِ منطبقِ ناشی از هدفِ بزرگ، هدف ضعیف را میپوشاند و یا پنهان میسازد. فیلتر فشردهسازی پالس وفقی که از تخمینگر RMMSE بهره میبرد، توانایی آشکارسازی هدف ضعیف پوشیده شده را دارد. اما حداقل سه عامل محدودکننده (بار محاسباتی، مقاومت در برابر دوپلر و گرفتگی پالس) برای پیادهسازی و کاربردهای عملی RMMSE وجود دارد. در این مقاله الگوریتمی بهینه و یکپارچه مبتنیبر پساپردازش وفقی، برای آشکارسازی اهداف و غلبهبر چالشهای RMMSE در سامانههای پدافندی الکترونیکی پیشنهاد میگردد. مقایسه کیفی عملکرد الگوریتم پیشنهادی FFL-APCRبهازاء SNRها و سرعتهای مختلف اهداف با دیگر الگوریتمها، نشان میدهد که الگوریتم FFL-APCR برای پیادهسازی در سامانههای زمان واقعی مناسب است. الگوریتم FFL-APCR میتواند اهداف ضعیف با سرعتهای زیاد و دچار گرفتگی پالس را با بار محاسباتی کمتر آشکار نماید. | |
کلیدواژهها | |
فیلتر منطبق؛ فشردهسازی پالس وفقی؛ گرفتگی پالس؛ پساپردازش وفقی؛ حداقل مجذور مربعات خطا تکراری | |
عنوان مقاله [English] | |
An Integrated Algorithm for Optimal Detection of Weak Radar Targets Masked by the Sidelobes of a Strong Target | |
نویسندگان [English] | |
Reza Keyvanshokooh؛ Majid Okhovvat | |
چکیده [English] | |
The targets that either have low radar cross-section typically, or their return signal has been deliberately reduced are referred to as weak targets in radar terminology. There are several algorithms for detection of a weak moving target. When such a target is in the vicinity of a large target, the side lobes of the matched filter output due to the large target mask or hide the weak target. The adaptive pulse compression filter that uses the RMMSE estimator has the ability to detect the masked weak target. However, there are at least three factors (computational load, Doppler robustness and pulse eclipsing) which limit the practical application of RMMSE. In this paper, an optimized and integrated algorithm based on adaptive post-processing is proposed to detect targets and to overcome the challenges of RMMSE in electronic defense systems. The FFL-APCR proposed algorithm when compared qualitatively to other algorithms indicates better performance for different SNRs and various target velocities, showing that it is more suitable for implementation in real-time systems. The FFL-APCR algorithm can detect high speed and pulse eclipsed weak targets with lower computational load. | |
کلیدواژهها [English] | |
Matched Filter, Adaptive Pulse Compression, Eclipsing Pulse, Adaptive Post-Processing, Reiterative Minimum Mean Square Error | |
مراجع | |
M. I. Skolnik, Introduction to Radar Systems, 3rd ed., New York: McGraw-Hill, 2001.##
|
|
R. Kayvan Shokooh and M. Okhovvat, “Design and implementation of parallel matched filter bank in pulse compression radars,” Journal of Passive Defence Science and Technology, vol. 1, no. 2, pp. 75-85, Winter 2011.##
|
|
M. A. Richards, J. A. Scheer, and W. A. Holm, “Principles of Modern Radar: Basic principles,” vol. 1, Sci. Tech., 2010.##
|
|
S. D. Blunt and K. Gerlach, “Adaptive pulse compression via MMSE estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 572-584, Apr. 2006.##
|
|
S. M. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,” Upper Saddle River, NJ: Prentice-Hall, , pp. 219-286 and pp. 344-350, 1993.##
|
|
N. Levanon, “Creating Sidelobe-Free Range Zone Around Detected Radar Target,” in IEEE 28-th Convention of Electrical and Electronics Engineers, 2014.##
|
|
S. D. Blunt, T. Higgins, and K. Gerlach, “Dimensionality reduction techniques for efficient adaptive pulse compression,” IEEE Trans. Aerospace and Electronic Systems, vol. 46, no. 1, pp. 349-362, Jan. 2010.##
|
|
L. Kong, M. Yang, and B. Zhao, “Fast implementation of adaptive multi-pulse compression via dimensionality reduction technique,” In 2012 IEEE Radar Conference, 2012.##
|
|
B
|
|
Y. Yang, L. Li, G. Cui, W Yi, L Kong, and X. Yang, “A modified adaptive multi-pulse compression algorithm for fast implementation,” In 2015 IEEE Radar Conference (RadarCon), May 2015.##
|
|
P. M. McCormick, S. D. Blunt, and Thomas Higgins, “A gradient descent implementation of adaptive pulse compression,” in IEEE Radar Conference (RadarConf), 2016.##
|
|
Z. Li, Z. Yan, S. Wang, L. Li, and M. Mclinden, “Fast adaptive pulse compression based on matched filter outputs,” IEEE Trans. on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 548-564, 2015.##
|
|
T. D. Cuprak and K. E. Wage, “Efficient Doppler-Compensated Reiterative Minimum Mean-Squared-Error Processing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 2, pp. 562-574, 2017.##
|
|
S. D. Blunt, A. K. Shackelford, K. Gerlach, and K. J. Smith, “Doppler Compensation & Single Pulse Imaging using Adaptive Pulse Compression,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, pp. 647-659, 2009.##
|
|
H. L. Van Trees, “Optimum Array Processing,” New York: Wiley, 2002.##
|
|
S. D. Blunt, K. Gerlach, and E. Mokole, “Pulse compression eclipsing repair,” In IEEE Radar Conf, Rome, Italy, 26-30 May 2008.##
|
|
K. Gerlach and S. D. Blunt, “Radar pulse compression repair,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1188-1195, 2007.##
|
|