تعداد نشریات | 38 |
تعداد شمارهها | 1,244 |
تعداد مقالات | 9,010 |
تعداد مشاهده مقاله | 7,873,258 |
تعداد دریافت فایل اصل مقاله | 4,722,483 |
پیشبینی تأخیر در سیستمهای کنترل مبتنیبر اینترنت با استفاده از روشهای فرا ابتکاری و مقایسه آنها | ||
مجله نوآوری های فناوری اطلاعات و ارتباطات کاربردی | ||
مقاله 5، دوره 1، شماره 1، آبان 1398، صفحه 45-52 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
روح اله اسداله پور کریمی* 1؛ رضا غفارپور1؛ عباس خان احمدی2 | ||
1جامع امام حسین (ع) | ||
2کارشناسی ارشد دانشگاه جامع امام حسین (ع) | ||
تاریخ دریافت: 19 اسفند 1397، تاریخ بازنگری: 18 تیر 1398، تاریخ پذیرش: 02 مرداد 1398 | ||
چکیده | ||
سیستمهای کنترل مبتنی بر اینترنت روزبهروز در حال رشد و گسترش هستند. تأخیر اطلاعات مبادله شده مبتنیبر شبکه یکی از مهمترین موضوعاتی است که این سیستمها با آن مواجه هستند. پیشبینی تأخیر میتواند کاربر را از تأخیر اطلاعات و همچنین اطلاعات ازدسترفته آگاه کند. پیشبینی تأخیر بهصورت دقیق مسئلهای پیچیده و دشوار است که دغدغه بسیاری از محققان بوده و الگوریتمهای متعددی جهت حل این مسئله ارائهشده است. در این پژوهش مدلی از بهینهسازی ارائه گردیده که در آن از الگوریتم سیستم ایمنی مصنوعی و ازدحام ذرات بهعنوان ابزار بهینهسازی و از نرمافزار مطلب بهعنوان ابزار شبیهساز جهت پیشبینی تأخیر در سیستمهای کنترل استفاده شده است. مقایسه نتایج حاصل از الگوریتم سیستم ایمنی مصنوعی با الگوریتم ازدحام ذرات روی دادههای یکسان، کارایی و برتری سیستم ایمنی مصنوعی را چه ازنظر سرعت همگرایی و چه ازنظر کیفیت پاسخ نشان میدهد. | ||
کلیدواژهها | ||
زمان تأخیر؛ پیشبینی تأخیر؛ کنترل مبتنیبر شبکه؛ سیستم ایمنی مصنوعی؛ بهینهسازی ازدحام ذرات؛ همگرایی | ||
عنوان مقاله [English] | ||
Delay forecast in the control system based on internet using the meta-heuristic methods and Comparing methods with each others | ||
نویسندگان [English] | ||
- -1؛ - -1؛ - -2 | ||
1- | ||
2- | ||
چکیده [English] | ||
Control systems based on internet are developing day by day. These systems are faced with many practical difficulties and challenges. Exchanged Information delay through the network is one of the most important issues of these systems and delay forecasting can make the user aware about the delays and missed data. As a result, the security system can prevent the cyber attacks. Predicting delays accurately, is a complex and difficult problem which has been studied by researchers, and several algorithms have been proposed to solve this problem. Artificial Immune System (AIS) and Particle Swarm Optimization (PSO) are two meta-heuristic methods based on stochastic search that has been developed to solve optimization problems. In this paper, the optimization model is presented. The AIS and PSO has been used as tools for optimization and the “Matlab” software has been utilized as a simulating tool to pridicting delays. In systems Comparing the results of AIS and PSO algorithm on the same data shows the efficiency and superiority of the AIS, both in terms of convergence speed and quality of response. | ||
کلیدواژهها [English] | ||
Time delay, Delay forecast, Control via the Internet, Artificial Immune System, Particle Swarm Optimization, convergence | ||
مراجع | ||
[1] P.Neumann, “Communication in industrial automation-what is going on,” Control EngineeringPractice, vol. 15, pp. 1332–1347, 2007.## [2] J. Baillieul and P. J. Antsaklis, “Control and communication challenges in networked realtime systems,” Proceedings of the IEEE, Special Issue on Technology of Networked Control Systems, vol. 95, pp. 256–285, January 2007.## [3] M.sharifzade and N.amjad, “radioactive power distribution use of particle swarm optimization” journal of modeling in engineering, seventh year, no.18, 2009.## [4] B.B.W.B. Nilsson, J. “Stochastic analysis and control of real-time systems with random time delays,” Automatica, vol. 34, no. 1, pp. 57–64. cited By (since 1996) 393.## [5] Nilsson, J. “ Real-Time Control Systems with Delays. ” PhD thesis, Department of Automatic Control, Lund Institute of Technology.1998.## [6] Q.Z. Shousong, H. “Stochastic optimal control and analysis of stability of networked control systems with long delay,” Automatica, vol. 39, no. 11, pp. 1877–1884. cited By (since 1996) 249, 2003.## [7] Zhang, L. Shi, Y. Chen, T. and Huang, B.“A new method for stabilization of networked control systems with random delays,” IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1177–1181, 2005.## [8] N.S.K. Huang, D. “State feedback control of uncertain networked control systems with random time delays,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 829–834, 2008.## [9] Yi, J. Wang, Q. Zhao, D. and Wen, J.T. “Bp neural network prediction-based variable-period sampling approach for networked control systems,” Applied Mathematics and Computation, vol. 185, no. 2, pp. 976 – 988. Special Issue on Intelligent Computing Theory and Methodology, 2007.## [10] Montestruque, L.A. and Antsaklis, P.J. “On the model-based control of networked systems,” Automatica, vol. 39, no. 10, pp. 1837 – 1843, 2003.##
[11] A.P. Montestruque, L.A.(2004) “Stability of model-based networked control systems with timevarying transmission times,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1562–1572. cited By (since 1996) 182.## [12] M. Besharati and M.heshmati, “Smart stabilization of network control systems with neuro-fuzzy approach for online prediction of random time delay,”, International conference new prespective in electrical & computer engineering, 2014.## [13] D. Huang and S. K. Nguang, "Robust fault estimator design for uncertain networked control systems with random time delays: An ILMI approach," Information Sciences, vol. 180, no. 3, pp. 465-480, 2010/02/01/ 2010.## [14] L. Wang, L. Cai, X. Liu, and X. Shen, "Bounds estimation and practical stability of AIMD/RED systems with time delays," Computer Networks, vol. 54, no. 7, pp. 1069-1082, 2010/05/17/ 2010.## [15] A. Zamani, “optimum design of the control with the use of particle swarm optimization” Isfahan university of technology, department of electrical computer, 2011.## [16] M. Ebtehaj, M. Fayazi, H. Ghadimi, “Isolation of power networks based on the optimal locating of PMU by the method of PSO algorithm”, National Electronics Mechatronics and Smart Systems Conference, 2014 (in Persian).## [17] V. Mousavi, S. Gheydari, “A new immune system cloning optimization algorithm and its implementation on the TSP issue”, Fourteenth Annual Conference of Iranian Computer Society, 2009 (in Persian).## [18] D. Maleki, H. Y. Moghaddam, M. A. Totunchi, “Using the fuzzy artificial immune system for security of computer networks”, Fifth Global Conference on Intelligent Systems, 2004 (in Persian).## [19] M. Ebtehaj, M. Fayazi, H. Ghadimi, “Use of immunization algorithm for optimal positioning of keys in distribution networks and their application in part of distribution network of Tabriz”, SIRD Regional Conference, 2011 (in Persian).## [20] A. Samiei, “Data meaningful reductions using artificial immune systems”, Computer and Robotics Magazine, pp. 39-49, 2009 (in Persian).## [21] A. Rezvanian, M. Meibodi, “Improve Artificial Immune System Using Fuzzy Logic”, The 10th Iranian Fuzzy Systems Conference, 2009 (in Persian).## | ||
آمار تعداد مشاهده مقاله: 416 تعداد دریافت فایل اصل مقاله: 195 |