تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,938 |
تعداد دریافت فایل اصل مقاله | 4,706,581 |
طراحی تقسیمکننده توان بر مبنای فناوری موجبر شکافی به منظور استفاده در آنتن آرایه شکافی باند 60 گیگاهرتز با سطح گلبرگ کناری پایین | ||
الکترومغناطیس کاربردی | ||
مقاله 11، دوره 7، شماره 2 - شماره پیاپی 19، اسفند 1398، صفحه 97-104 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمد صادق دهقانی1؛ داود ظریفی* 2 | ||
1دانشجوی کارشناسی ارشد مخابرات، دانشگاه کاشان | ||
2استادیار/دانشگاه کاشان | ||
تاریخ دریافت: 22 آبان 1398، تاریخ بازنگری: 20 آذر 1398، تاریخ پذیرش: 16 بهمن 1398 | ||
چکیده | ||
در این مقاله یک نمونه تقسیمکننده توان موج میلیمتری برمبنای فناوری موجبر شکافی برای استفاده در شبکه تغذیه یک آنتن آرایه شکافی طراحی میشود. نتایج شبیهسازی نشان میدهد که ساختار پیشنهادی دارای پهنای باند تطبیق ورودی حدود 10% در محدوده فرکانسی 58 تا GHz 64 است. مزیت بارز استفاده از فناوری موجبر شکافی در فرکانسهای موج میلیمتری دستیابی به ساختارهای موجبری با تلفات کم و بدون نیاز به اتصال فیزیکی لایههای مختلف ساختار به یکدیگر است که پیچیدگی و چالشهای فرایند ساخت را کاهش میدهد. در نهایت با استفاده از تقسیمکننده توان طراحیشده، یک آنتن آرایه شکافی صفحهای با سطح گلبرگ کناری dB 23- در فرکانس مرکزی GHz 60 با پهنای باند 1/4% طراحی میشود. بهره آنتن در محدوده فرکانسی GHz 8/58 تا GHz 25/61 بیشتر از dB 7/21 با بازدهی بالاتر از 88% میباشد. | ||
کلیدواژهها | ||
تقسیمکننده توان؛ فناوری موجبر شکافی؛ آنتن آرایه شکافی؛ سطح گلبرگ کناری پایین | ||
عنوان مقاله [English] | ||
Design of Power Divider Based on Gap Waveguide Technology for Use in Low Sidelobe Level 60-GHz Slot Array Antenna | ||
نویسندگان [English] | ||
Mohammad Sadegh Dehghani1؛ Davoud Zarifi2 | ||
1University of Kashan | ||
2University of Kashan | ||
چکیده [English] | ||
In this paper, a millimeter-wave power divider based on gap waveguide technology is designed for use in the feeding network of a slot array antenna. The simulation results demonstrate that the proposed structure has about 10% matching input bandwidth in the 58-64 GHz frequency range.The significant advantage of using gap waveguide technology is that there is no requirement of good electrical contact among different metallic parts of the low-loss structure which considerably simplifies the manufacturing processes and mechanical assembly at millimeter-waves applications. Finally, a planar slot array antenna is designed with sidelobe level of -23 dB and bandwidth of 4.1% at the center frequency of 60 GHz. The gain of antenna is higher than 21.7 dB over the operation bandwidth from 58.8 to 61.25 GHz, corresponding to efficiency larger than 88%. | ||
کلیدواژهها [English] | ||
Power Divider, Gap Waveguide Technology, Slot Array Antenna, Low Sidelobe | ||
مراجع | ||
[1] P. Smulders, “Exploiting the 60 Ghz Band for Local Wireless Multimedia Access: Prospects And Future Directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.##
[2] S. K. Yong and C.-C. Chong, “An Overview of Multigigabit Wireless Through Millimeter Wave Technology: Potentials and Technical Challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, p. 078907, 2007.##
[3] E. Levine, G. Malamud, S. Shtrikman, and D. Treves, “A Study of Microstrip Array Antennas with the Feed Network,” IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 426–434, Apr. 1989.##
[4] M. Li and K.-M. Luk, “Low-Cost Wideband Microstrip Antenna Array for 60-Ghz Applications,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3012–3018, Jun. 2014.##
[5] M. Nagasaka, S. Nakazawa, and S. Tanaka, “12/21ghz Dual-Band Feed Antenna for Satellite Broadcasting Receiving Reflector Antenna,” in Proc. ISAP, pp. 790–793, Oct./Nov. 2012.##
[6] S. Cheng, H. Yousef, and H. Kratz, “79 Ghz Slot Antennas Based on Substrate Integrated Waveguides (SIW) in a Flexible Printed Circuit Board,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 64–71, Jan. 2009.##
[7] J. Wu, Y. J. Cheng, and Y. Fan, “A Wideband High-Gain High-Efficiency Hybrid Integrated Plate Array Antenna for V-Band Inter-Satellite Links,” IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1225–1233, Apr. 2015.##
[8] Y. Li and K.-M. Luk, “60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays,” IEEE Trans. Antennas Propag., vol. 63, no. 3, pp. 1075–1085, Mar. 2015.##
[9] Y. Miura, J. Hirokawa, M. Ando, Y. Shibuya, and G. Yoshida, “Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 2844–2851, Aug. 2011.##
[10] D. Kim, M. Zhang, J. Hirokawa, and M. Ando, “Design and fabrication of a dual-polarization waveguide slot array antenna with high isolation and high antenna efficiency for the 60 GHz band,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3019–3027, Jun. 2014.##
[11] G.-L. Huang, S.-G. Zhou, T.-H. Chio, H.-T. Hui, and T.-S. Yeo, “A Low Profile and Low Sidelobe Wideband Slot Antenna Array Feb by an Amplitude-Tapering Waveguide Feed-Network,” IEEE Trans. Antennas Progag., vol. 63, no. 1, pp. 419–423, Jan. 2015.##
[12] P.-S. Kildal, “Three Metamaterial-Based Gap Waveguides Between Parallel Metal Plates for Mm/Submm Waves,” in Proc. 3rd Eur. Conf. Antennas Propag., Berlin, Germany, pp. 28–32, Mar. 2009.##
[13] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, no. 4, pp. 84–87, Apr. 2009.##
[14] A. U. Zaman and P.-S. Kildal, “Gap waveguides,” in Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds. Singapore: Springer, 2016, pp. 3273–3347.##
[15] A. U. Zaman and P.-S. Kildal, “Wide-Band Slot Antenna Arrays with Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992–3001, Jun. 2014.##
[16] D. Zarifi, A. Farahbakhsh, A. U. Zaman, and P. S. Kildal, “Design and Fabrication of a High-Gain 60-Ghz Corrugated Slot Antenna Array with Ridge Gap Waveguide Distribution Layer,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905–2913, Jul. 2016.##
[17] D. Zarifi, A. Farahbakhsh and A. U. Zaman, “A Gap Waveguide-Fed Wideband Patch Antenna Array for 60-Ghz Applications,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4875-4879, Sep. 2017.##
[18] A. Farahbakhsh, D. Zarifi and A. U. Zaman, “A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide With 30% bandwidth,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 1008-1013, Feb. 2018.##
[19] Z. Shaterian, A. K. Horestani and J. R. Mohassel, “Design of Slot Array Antenna in Groove Gap Waveguide Technology ,” IET Microwave Antenna and Propagation., vol. 13, no. 8, pp. 1235-1239, June 2019.##
[20] B. Ahmadi and A. Banai, “Direct Coupled Resonator Filters Realized by Gap Waveguide Technology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3445–3452, Oct. 2015.##
[21] D. Sun and J. Xu, “A Novel Iris Waveguide Bandpass Filter Using Air Gapped Waveguide Technology”, IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 475-477, July 2016.##
[22] M. Rezaee and A. U. Zaman, " Realisation of Carved and Iris Groove Gap Waveguide Filter and E-Plane Diplexer for V-Band Radio Link Application," IET Microwave Antenna and Propagation, vol.11, no. 5, pp. 2109-2115, Oct. 2017.##
[23] D. Zarifi, A. R. Shater, A. Ashrafian and M. Nasri, “Design of Ku-Band Diplexer Based on Groove Gap Waveguide Technology,” International Journal of RF and Microwave Computer-Aided Engineering, pp. 1-6, 2018.##
[24] A. Karimi Nobandegani and S. E. Hosseini, "Design and Simulation of a Ku-Band Array Antenna Feed Network Based on Novel Ridge-Gap Waveguide Technology," Journal of Radar, vol.6, no. 2, pp. 1-6, 2019 (in Persian)##
[25] S. I. Shams and A. Kishk, “Design of 3-dB Hybrid Coupler Based on RGW Technology,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3849-3855, Oct. 2017.##
[26] D. Zarifi and A. R. Shater, “Design of a 3‐Db Directional Coupler Based on Groove Gap Waveguide Technology,”Microwave and Optical Technology Letters, vol. 59, no. 7, pp. 1597-1600, 2017.##
[27] D. Zarifi, A. Farahbakhsh and A. U. Zaman, "Design and Fabrication of Wideband Millimeter- wave Directional Couplers with Different Coupling Factors Based on Gap Waveguide Technology," IEEE Access, vol. 7, pp. 88822-88829, 2019.##
[28] A.U. Zaman, T. Vukusic, Alexanderson, M., et al. "Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High Frequency Microwave Modules", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 1, pp. 16–25, 2014.##
[29] R. S. Elliot, Antenna Theory and Design, Wiley, New Jersey, 2003, pp. 141-147.##
[30] A. Khaleghi, Z. TalePour and M. Ramazan, "Resonant Slot Antenna Array on a Ridge Gap Waveguide," IET Microwaves Antennas Propag., vol. 11, no. 8, pp. 1092-1097, 2017.##
[31] S. Park, Y. Tsunemitsu, J. Hirokawa and M. Ando, “Center Feed Single Layer Slotted Waveguide Array,” IEEE Trans. Antennas Propag., Vol. 54, No. 5, pp. 1474-1480, May 2006.##
[32] Junfeng Xu, Wei Hong, Pang Chen, Ke Wu: “Design and Implementation of Low Sidelobe Substrate Integrated Waveguide Longitudinal Slot Array Antennas”, IET Microw. Antennas Propag., Vol. 3, No.5, pp. 790-797, 2009.##
[33] H. Yang, “Improved Design of Low Sidelobe Substrate Integrated Waveguide Longitudinal Slot Array,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 237–240, 2015.##
J. Wang, and Y. J. Cheng, “W-Band High Gain Slot Array Antenna with Low Sidelobe Level,” IEEE 5th Asia-Pacific Conference on Antennas and Propagation, pp. 27-28, 2016.## | ||
آمار تعداد مشاهده مقاله: 575 تعداد دریافت فایل اصل مقاله: 523 |