تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,808 |
تعداد دریافت فایل اصل مقاله | 4,706,416 |
طراحی و شبیه سازی سامانه شبه اپتیک عبوری جهت تصویربردار موج میلیمتری | ||
علوم و فناوریهای پدافند نوین | ||
مقاله 1، دوره 11، شماره 2 - شماره پیاپی 40، تیر 1399، صفحه 123-133 اصل مقاله (1.36 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
فائزه جدیدی1؛ عبداله اسلامی مجد* 2؛ علیرضا عرفانیان3؛ سیدحسین محسنی ارمکی3 | ||
1دانشجوی دکترا- مجتمع دانشگاهی برق و کامپیوتر- دانشگاه صنعتی مالک اشتر- لویزان- تهران | ||
2دانشکده الکترونیک- دانشگاه صنعتی مالک اشتر | ||
3مجتمع دانشگاهی برق و کامپیوتر- دانشگاه صنعتی مالک اشتر- لویزان- تهران- ایران | ||
تاریخ دریافت: 27 اردیبهشت 1398، تاریخ بازنگری: 25 مهر 1398، تاریخ پذیرش: 25 خرداد 1399 | ||
چکیده | ||
در این مقاله یک آنتن شبهاپتیک تصویربردار موج میلیمتری در فرکانس مرکزی 94 گیگاهرتز در باند W طراحیشده است. سامانه تصویربردار طراحیشده جهت تشخیص اشیای فلزی در فاصله 5 متری به تفکیکپذیری کمتر از 30 میلیمتر نیاز دارد. این سامانه غیرفعال شامل ترکیبی از یک عدسی دیالکتریک (اپتیک اولیه) جهت کانونی کردن تابش و یک هورن هرمی (اپتیک ثانویه) با دیوارههای فلزی بازشونده برای هدایت و تزویج مناسب تابش کانونیشده، به آشکارساز است. پارامترهای کلی این سامانه با استفاده از روش اپتیک هندسی محاسبه شده است. در ادامه ترکیبی از روش باریکه گاوسی و ماتریس انتقال پرتو ABCD برای تجزیهوتحلیل آنتن عدسی جهت یافتن محل و اندازه هورن تغذیه استفاده شده است. از نرمافزار قدرتمند طراحی اپتیکی ZEMAX برای طراحی عدسی و تصدیق نتایج طراحی بر اساس ردیابی پرتو استفاده شده است. در طراحی و شبیهسازی عدسی دیالکتریک، ماده پلیاتیلن بسیار چگال (HDPE) با قطر دهانه 650 میلیمتر بهکار رفته است. سپس یک هورن هرمی بهینه با بهره 9/18 دسیبل در فرکانس مرکزی 94 گیگاهرتز طراحی شده است. شبیهسازی هورن و بررسی نتایج آن با استفاده از نرمافزارهای تجاری FEKO و CST انجام شد. نتایج شبیهسازی آنتن هورن هرمی نشان میدهد که ترکیب آن با عدسی دیالکتریک مناسب است و روش تلفیقی (اپتیک هندسی، باریکه گاوسی و ماتریس ABCD) برای طراحی سامانه شبهاپتیک شامل عدسی و هورن برای تصویربرداری با الزامات موردنظر دقیق، ساده و کارآمد است. | ||
کلیدواژهها | ||
تصویربرداری موج میلیمتری؛ آنتن شبه اپتیک؛ طراحی اپتیکی و روش باریکه ی گاوسی | ||
عنوان مقاله [English] | ||
Design and Simulation of a Refractive Quasi-Optical System for Millimetre Wave Imaging | ||
نویسندگان [English] | ||
F. Jadidi1؛ A. Eslami Majd2؛ A. Erfanian3؛ S. H. Mohseni Armaki3 | ||
1PhD Student- Maleke-Ashtar University of Technology- Lavizan- Tehran | ||
2Electronic department, Malek ashtar university | ||
3Department of Electrical and Computer Engineering- Maleke- Ashtar University of Technology- Lavizan- Tehran- Iran | ||
چکیده [English] | ||
In this paper, a quasi-optical millimeter wave imaging antenna at central frequency of 94 GHz in W-band is designed. The designed imaging system requires resolution less than 30 mm at distance of 5 meters to recognize metal objects. This passive system consists of a combination of a dielectric lens (primary optics) to focus the radiation and a pyramidal horn (secondary optics) with open metal walls to properly direct and couple the focal radiation to the detector. The general parameters of this system are calculated using the geometrical optics method. Then the combination of Gaussian beam method and ABCD ray transfer matrix is used to analyze the lens antenna to find the location and size of the feeding horn. The powerful optical design software ZEMAX was used to design the lens and to verify the design results based on ray tracing. The designed dielectric lens is made of High Density Polyethylene (HDPE) with a diameter of 650 mm. Then, an optimized pyramidal horn with gain of 18.9 dB at center frequency of 94 GHz is designed. The simulation of the horn and investigation of its results performed using the FEKO and CST commercial softwares. The simulation results of the pyramid horn antenna indicate that its combination with dielectric lens is appropriate and the hybrid method (geometrical optics, Gaussian beam and ABCD matrix) to design the quasi-optical system, including the lens and the horn antenna for imaging with considered requirements, is accurate, simple and efficient. | ||
کلیدواژهها [English] | ||
Millimetre Wave Imaging, Quasi-Optic Antenna, Optical Design, Gaussian Beam Method | ||
مراجع | ||
[1] Zhou, J.; Chen, Q.; Zhang, Y.; Fan, Y.; Da Xu, K. “Aspheric Dielectric Lens Antenna for Millimeter-wave Imaging System”; Asia PACIF. Microwave 2015, 1-3.## [2] Sheen, D. M.; McMakin, D. L.; Hall, T. E. “Three-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection”; IEEE Trans. Microwave Theory 2001, 49, 1581-1592.## [3] Duric, A.; Magun, A. “Antenna Design for an Imaging Radiometer at 94GHz”; Proc. Int. ITG Conf. Antennas 2003, 257-260.## [4] Taylor, C. T. “Enhancement of Imagery From Passive Millimetre-wave Systems for Security Scanning”; Ph.D. Thesis, The University of Manchester, Manchester, 2015.## [5] Chen, Q.; Fan, Y.; Zhou, J.; Song, K. “Design of Quasi-Optical Lens Antenna for W-Band Short Range Passive Millimeter-Wave Imaging”; J. Comput. Com. 2015, 3, 93-99.## [6] Kim, W. G.; Moon, N. W.; Singh, M. K.; Kim, H. K.; Kim, Y. H. “Characteristic Analysis of Aspheric Quasi-optical Lens Antenna in Millimeter-wave Radiometer Imaging System”; Appl. Optics 2013, 52, 1122-1131.## [7] Wiltse, J. C. “History of Millimeter and Submillimeter Waves”; IEEE Trans. Microw. Theory 1984, 32, 1118-1127.## [8] Ditchfield, C.; England, T. “Passive Detection at Q Band”; RRE. Memo. 1955, 1124.## [9] Appleby, R.; Anderton, R. N. “Millimeter-Wave and Submillimeter-wave Imaging for Security and Surveillance”; Proc. IEEE, 2007, 95, 1683-1690.## [10] Lettington, A.; Alexander, N.; Dunn, D. “A New Opto-mechanical Scanner for Millimeter and Sub-millimeter Wave Imaging”; Proc. Soc. Photo-Opt INS. 2005, 5789, 16-24.## [11] Gao, X.; Li, C.; Gu, S.; Fang, G. “Design, Analysis and Measurement of a Millimeter Wave Antenna Suitable for Stand Off Imaging at Checkpoints”; J. Infrared. Millim. TE. 2011, 32, 1314-1327.## [12] Meng, Y.; Qing, A.; Lin, C.; Zang, J.; Zhao, Y.; Zhang, C. “Passive Millimeter Wave Imaging System Based on Helical Scanning”; SCI. REP-UK. 2018, 8.## [13] Yeom, S.; Lee, D. S.; Son, J. Y.; Jung, M. K.; Jang, Y.; Jung, S.-W. “Real-time Outdoor Concealed-Object Detection with Passive Millimeter Wave Imaging”; Opt. Express 2011, 19, 2530-2536.## [14] Jinghui, Q.; Zhong, Z.; Kai, L.; Gaofei, L.; Fei, X. “Design and Measurement of Quasi-optics for Millimeter Wave Imaging System”; IEEE Int. Workshop Imaging Systems and Techniques 2009, 132-135.## [15] Li, C.-M.; Huang, C.-Y.; Chang, L.-Y.; Yu, Y.-C.; Nien, C.-C.; Tarng, J.-H. “Development of a Compact Total Power Passive Millimeter-Wave Imaging System”; IEEE Int. Symp. Rf. 2011, 153-156.## [16] Bevan, M. “Electromagnetic Analysis of Horn Antennas in the Terahertz Region”; Thesis, National University of Ireland Maynooth, 2013.## [17] Goldsmith, P. F. “Quasioptical Systems”; Chapman & Hall, 1998.## [18] Jing-Hui, Q.; Nan-Nan, W.; Yi-Chi, Z.; Cai-Tian, Y.; Wei-Bo, D. “Research on Quasi-optics and Feed Antenna for Millimeter Wave Imaging System”; Proc. 9th Int. Symposium on Antennas, Propagation and EM Theory 2010, 45-48.## [19] Milligan, T. A. “Modern Antenna Design”; Wiley Online Library, 2005.## [20] Fischer, R. E.; Tadic-Galeb, B.; Yoder, P. R.; Galeb, R.; Kress, B. C.; McClain, S. C. “Optical System Design”; Citeseer, 2000.## [21] Chen, Q.; Fan, Y.; Song, K. “Optimized Design of W-Band Quasi-Optical Lens by Using Optical Simulator and Numerical Analysis”; Prog. Elect. Res. 2016, 46, 173-181.## [22] Moffa, P.; Yujiri, L.; Agravante, H. H.; De Amici, G.; Dixon, D.; Fornaca, S. W. “Large-aperture Passive Millimeter-wave Pushbroom Camera”; PROC. Soc. Photo-Opt. Ins. 2001, 4373, 1-7.## [23] Malakzadeh, A.; Kamjoo, M. J.; Zare Kalate, S. R. “Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator”; Adv. Defence Sci. Technol. 2016, 6, 59-70.## [24] Goldsmith, P. F. “Quasi-optical Techniques”; Proc. IEEE 1992, 80, 1729-1747.## [25] O'Sullivan C. M.; Murphy, J. A. “Field Guide to Terahertz Sources, Detectors, and Optics”; SPIE Press Book, 2012.## [26] Alireza, K.; Martin, H. C.; Robert, D.; Mohammed, S.; Thomas, K. O.; Thorsten, S. “The Horn Antenna as Gaussian Source in the MM-Wave Domain”; J. Infrared Millim. TE. 2014, 35, 720–731.## [27] Wade, P. “Multiple Reflector Dish Antennas”; ed, 2004.## [28] Svedin, J.; Huss, L. G. “A 94 GHz Imaging Radar System”; Swedish Defence Research Agency, Sensor Technology, Technical Report, FOI-R-1191-SE, 2004.## [29] Tran, H. P.; Gumbmann, F.; Weinzierl, J.; Schmidt, L. P. “A Fast Scanning W-Band System for Advanced Millimetre-wave Short Range Imaging Applications”; EUROP. Radar Conf. 2006, 146-149.## [30] Raymond, C.; Ronca, S. “Relation of Structure to Electrical and Optical Properties”; Brydson's Plastics Materials, ed: Elsevier, 2017, 103-125.## [31] Lamb, J. W. “Miscellaneous Data on Materials for Millimetre and Submillimetre Optics”; J. Infrared Millim. TE. 1996, 17, 1997-2034.## [32] Barik, B. R.; Kalirasu, A. “Design of a UHF Pyramidal Horn Antenna Using CST”; J. Pure Appl. 2017, 114, 447-457.## | ||
آمار تعداد مشاهده مقاله: 681 تعداد دریافت فایل اصل مقاله: 444 |