تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,843,853 |
تعداد دریافت فایل اصل مقاله | 4,705,347 |
تصویربرداری سهبعدی رادار دیوارگذر با استفاده از روش حسگری فشرده | ||
رادار | ||
مقاله 11، دوره 7، شماره 2 - شماره پیاپی 22، اسفند 1398، صفحه 111-118 اصل مقاله (1.2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
علیرضا صالحی برزگر* 1؛ احمد چلداوی2 | ||
1دانشجوی دکترا، دانشکده برق، دانشگاه علم وصنعت، تهران، ایران | ||
2استاد، دانشکده برق، دانشگاه علم وصنعت، تهران، ایران | ||
تاریخ دریافت: 03 دی 1398، تاریخ بازنگری: 28 اردیبهشت 1399، تاریخ پذیرش: 22 تیر 1399 | ||
چکیده | ||
یکی از روشهای اصلی استخراج تصویر سهبعدی از اطلاعات دریافتی در رادارهای دیوارگذر، روش توموگرافی پراشی (DT) است. در این روش به خاطر تعداد زیاد اندازهگیری میدانهای دریافتی، زمان دریافت اطلاعات و استخراج تصویر قابلملاحظه است. روش حسگری فشرده (CS) برای کاهش اندازهگیریها و صرفهجویی زمانی دریافت اطلاعات در کاربردهای راداری مورد استفاده قرار میگیرد. شرط لازم برای اعمال این روش تنک بودن بردار هدف است. در این مقاله نشان میدهیم با استفاده از روش CS و تبدیل فوریه غیریکنواخت (NUFFT) سرعت اندازهگیری و پردازش روش DT بهطور قابلملاحظهای افزایش خواهد یافت. شبیهسازی و نتایج اندازهگیری اعتبار روش تصویربرداری را تأیید میکند. | ||
کلیدواژهها | ||
رادارهای دیوارگذر؛ توموگرافی پراشی؛ حسگری فشرده؛ تبدیل فوریه غیریکنواخت | ||
عنوان مقاله [English] | ||
Three Dimensional Through the Wall Radar Imaging Using Compressed Sensing | ||
نویسندگان [English] | ||
Alireza Salehi Barzegar1؛ Ahmad Cheldavi2 | ||
1PhD student, Faculty of Electrical Engineering, University of Science and Technology, Tehran, Iran | ||
2Professor, Faculty of Electrical Engineering, University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
In this paper, the compressive sensing (CS) method is used in the through the wall radar imaging (TWRI) to reduce the measurement points and data acquisition time, consequently. In fact, the large required amount of measurement points is considered as one of the main challenges in TWRI which can be mitigated by this proposed method. The diffraction tomography (DT) method is the most effeicient conventional method used in TWRI process. By exploiting the advantages of the CS and non uniform fast Fourier transform (NUFFT), the effectiveness and speediness of the DT method is significantly increased. Simulation and experiment results have verified the validity of the proposed imaging method. | ||
کلیدواژهها [English] | ||
through-the-wall radar imaging (TWRI), diffraction tomography (DT), Compressed Sensing (CS), Nonuniform fast Fourier transform (NUFFT) | ||
مراجع | ||
[1] F. Ahmad and M. G. Amin, “Noncoherent approach to through-the-wall radar localization,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 4, pp. 1405–1419, Oct. 2006 [2] F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beam-former f or imaging through a d ielectric wall,” IEEE Trans. Aerosp. Elec-tron. Syst., vol. 41, no. 1, pp. 271–283, Jan. 2005. [3] F. Ahmad, Y. Zhang, and M. Amin, “Three-dimensional wideband b eam-forming for imaging through a single wall,” IEEE Geosci. Remote Sensing Lett., vol. 5, no. 2, pp. 176–179, Apr. 2008. [4] L. P. Song, C. Yu , and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2793–2798, Dec. 2005. [5] F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sensing Lett., vol. 4 , no. 4, pp. 513–517, Oct. 2007. [6] W. Zhang, A. Hoorfar, and L. Li, “Through-the-wall target localization with time reversal music method,” Progr. Electromagn. Res., vol. 106, pp. 75–89, 2010. [7] W. Zhang, A. Hoorfar, C. Thajudeen, and F. Ahmad, “Full polarimetric beam-forming algorithm for through-the-wall radar imaging,” Radio Sci., vol. 46, pp. RS0E16-1–RS0E16-17, Oct. 2011. [8] W. Zhang, A. Hoorfar, and Q. H. Liu, “Three dimensional imaging of targets behind multilayered walls,” in Proc. IEEE Int. Symp. APSURSI , Chicago, IL, pp. 1–2, 2012. [9] W. J. Zhang and A. Hoorfar, “Three-dimensional real-time through-the-wall radar imaging with diffraction tomographic algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4155-4163, Jul. 2013. [10] J. Yang, T. Jin, X. Huang, J. Thompson, and Z. Zhou, “Sparse MIMO array forward-looking GPR imaging based on compressed sensing in clutter environment,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4480–4494, Jul. 2014. [11] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182–1195, Dec. 2007. [12] W. Zhang, M. G. Amin, F. Ahmad, A. Hoorfar, and G. E. Smith, “Ultrawideband impulse radar through-the-wall imaging with compressive sensing,” Int. J. Antennas Propag., vol. 2012, Feb. 2012, Art. no. 251497, doi: 10.1155/2012/251497. [13] T. B. Hansen and P. M. Johansen, “Inversion scheme f or monostatic ground penetrating r adar that takes into account the p lanar air-soil interface,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 496–506, Jan. 2000. [14] Z. Yang and Y. R. Zheng, “Near-field 3-D synthetic aperture radar imaging via compressed sensing,” in Proc. IEEE ICASSP, Kyoto, pp. 2513-2516, 2012. [15] A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput., vol. 14, no. 6, pp. 1368–1393, Nov.1993. [16] L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev., vol. 46, no. 3, pp. 443–454, 2004. [17] J. Song, Q. H. Liu, K. Kim, and W. Scott, “High-resolution 3-D radar imaging through nonuniform fast Fourier transform (NUFFT),” Commun. Comput. Phys., vol. 1, no. 1, pp. 176–191, Feb. 2006. [18] D. S. Smith, S. Sengupta, S. A. Smith, and E. Brian Welch, “Trajectory optimized NUFFT: Faster non-cartesian MRI reconstruction through prior knowledge and parallel architectures,” Magn. Reson. Med, vol. 81, no. 3, pp. 2064–2071, Oct. 2019. [19] D. Sun, S. Xing, Y. Li, B. Pang, and X. Wang, “Sub-aperture partition-ing method for three-dimensional wide-angle synthetic aperture radar imaging with non-uniform sampling,” Electronics, vol. 8, no. 6, pp. 629, Jun. 2019. [20] P. Zhang, P. Fei, X. Wen, and F. Nian, “A novel through-the-wall imaging algorithm combined with phase shift migration and NUFFT,” Chinese Journal of Electronics, vol. 26, no. 5, pp. 1096–1100, 2017. [21] L. Yuan, J. Liu, and J. Ye, “Efficient methods for overlapping group Lasso,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2104-2116, Sept. 2013. [22] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. [23] M. Dehmollaian and K. Sarabandi, “Refocusing through bu ilding walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens., vo l. 46, no. 6, pp. 1589–1599, Jun. 2008. | ||
آمار تعداد مشاهده مقاله: 627 تعداد دریافت فایل اصل مقاله: 353 |