تعداد نشریات | 38 |
تعداد شمارهها | 1,252 |
تعداد مقالات | 9,074 |
تعداد مشاهده مقاله | 8,161,529 |
تعداد دریافت فایل اصل مقاله | 4,918,028 |
کنترل یک ربات زیرسطحی جدید با پایداری و مانور پذیری بالا به منظور تعقیب هدف | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
مقاله 3، دوره 18، شماره 55، اسفند 1398، صفحه 28-39 | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
فریار شمشیری امیرکلایی؛ رضا حسن زاده قاسمی* | ||
گروه مهندسی مکانیک- دانشگاه حکیم سبزواری | ||
تاریخ دریافت: 15 مرداد 1398، تاریخ بازنگری: 08 شهریور 1398، تاریخ پذیرش: 07 مهر 1398 | ||
چکیده | ||
شناور زیرسطحی که بتواند مأموریتهایی مانند تعقیب، شکار، دنبال و یا همراهی کردن یک ربات یا جاندار سطحی یا زیرسطحی را با دقت مناسب به انجام برساند، باید از مانورپذیری بالایی برخوردار باشد. در این مقاله، یک شناور زیرسطحی جدید نوع هاورینگ به منظور تعقیب یک شئ سطحی و یا زیرسطحی، پیشنهاد و مورد شبیهسازی و کنترل قرار گرفته است. شناور زیرسطحی بکار رفته، به کمک الگوریتمهای کنترلی مناسب قادر است با دریافت اطلاعات لازم از موقعیت هدف، کوتاهترین مسیر لازم برای رسیدن و تعقیب هدف را بپیماید به نحوی که هدف همواره در زاویهدید شناور باشد. در این مقاله، کنترلکننده بر اساس مدل دینامیکی خطیسازیشده طراحی و شبیهسازی شده و سپس، به مدل دینامیکی غیرخطی اِعمال و اعتبارسنجی انجام شده است. کنترلکنندهی پیشنهادی دارای سه حلقه میباشد: یک حلقه برای کنترل مسیر در صفحهی عمودی، یک حلقه برای کنترل مسیر در صفحهی افقی و کنترلکننده سوّم برای کنترل سرعت پیشروی ربات روی مقدار مشخص. به منظور بررسی مقاوم بودن کنترلکننده، اثر جریانهای آبی به صورت نیروهای اغتشاشی به شناور زیرسطحی بررسی شده است. | ||
کلیدواژهها | ||
تعقیب هدف؛ ربات هوشمند زیرسطحی؛ زاویه دید ربات | ||
عنوان مقاله [English] | ||
The Control of a New Underwater Vehicle with High Stability and Maneuverability in order to Chase the Target | ||
نویسندگان [English] | ||
Faryar Shamshiri Amirkolai؛ Reza Hasanzadeh Ghasemi | ||
Department of Engineering, Hakim Sabzevari University | ||
چکیده [English] | ||
An underwater vehicle, which is able to carry out missions like chasing, hunting, pursuing or going along with a robot or a surface or subsurface organism with appropriate accuracy, must possess high maneuverability. In this article, a new hovering type underwater vehicle is proposed, simulated and controlled in order to chase a surface or subsurface object. With the help of proper control algorithms, the underwater vehicle is able to obtain the necessary information of the target position in order to travel the shortest path to reach the target and also, keep the target within line of sight at all times. In this paper, the controller is first designed and simulated based on a linearized dynamic model and then applied to a nonlinear dynamic model, and finally, the validation has been done. The proposed controller has three loops: A loop to control the path in the vertical plane, a loop to control the path in the horizontal plane and a third controller to control the speed of the robot's advance at a specified value. In order to investigate the controller's resistance, this paper also investigates the effect of currents in the form of disturbance forces on the underwater vehicle. | ||
کلیدواژهها [English] | ||
Chase the Target, Autonomous Underwater Vehicle, Line of Sight of Robot | ||
مراجع | ||
[1] Chen, M., and Zhu, D., “A novel cooperative hunting algorithm for inhomogeneous multiple autonomous underwater vehicles,” IEEE Access, Vol. 6, February 2018, pp. 7818-7828. [2] Gwyneth, E., Kukulya, A., Austin, T., Dennett, M., Littlefield, R., Packard, G., Purcell, M., Stokey, R., and Skomal, R., “Continuous autonomous tracking and imaging of white sharks and basking sharks using a REMUS-100 AUV,” Oceans IEEE Conference, San Diego, USA, September 2013, pp. 1-5. [3] Clark, C. M., Forney, C., Manii, E., Shinzaki, D., Gage, C., Farris, M., Lowe, C. G., and Moline, M., “Tracking and following a tagged leopard shark with an autonomous underwater vehicle, Journal of Field Robotics, Vol. 30, No. 3, March 2013, pp. 309-322. [4] Myint, M., Yonemori, K., Lwin, K. N., Yanou, A., and Minami, M., “Dual-eyes vision-based docking system for autonomous underwater vehicle: An approach and experiments,” Journal of Intelligent & Robotic Systems, Vol. 86, October 2017, pp. 1-28. [5] Shamshiri Amirkolai, F., and Hasanzadeh Ghasemi, R., “Representation of an autonomous underwater vehicle and trajectory controller design for in-water ship hull inspection,” Modares Mechanical Engineering, Vol. 15, No. 10, December 2015, pp. 12-22. [6] Kadkhodaei, A., and Hasanzadeh Ghasemi, R., “Inspection of undersea Oil and Gas pipelines by new variable thrust vector underwater robotic platform,” Marine Engineering, Vol. 12, No. 24, January 2017, pp 127-133. [7] Karimi, A., and Hasanzadeh Ghasemi, R., “Equipping of a hovering type autonomous underwater vehicle with ballast tanks and its effect on degrees of freedom,” Modares Mechanical Engineering, Vol. 17, No. 7, September 2017, pp. 397-404. [8] Hover, F. S., “Maneuvering performance of autonomous underwater vehicles,” DTIC Document, April 2006. [9] Gertler, M., and Hagen, G. R., “Standard equations of motion for submarine simulation,” DTIC Document, June 1967. [10] Logan, C. L., “A comparison between H-infinity/Mu-synthesis control and sliding-mode control for robust control of a small autonomous underwater vehicle,” Symposium on Autonomous Underwater Vehicle Technology, Cambridge, MA, USA, July 1994, pp. 399-416. [11] Liang, X., Zhang, J., Qin, Y., and Yang, H., Dynamic modeling and computer simulation for autonomous underwater vehicles with fins,” Journal of Computers, Vol. 8, No. 4, April 2013, pp. 1058-1064. [12] Yang, C., “Modular modeling and control for autonomous underwater vehicle (AUV),” Master Thesis, National University of Singapore, April 2008. [13] Karimi, A., and Hasanzadeh Ghasemi, R., “Depth control of an HAUV with ballast tank,” 18th Marine Industries Conference, Kish Island, Iran, October 2016. [14] Prestero, T. T. J., “Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle,” Master Thesis, Massachusetts Institute of Technology, September 2001. [15] Pyo, J., Joe, H. G., Kim, J. H., Elibol, A., and Yu, S. C., “Development of hovering-type AUV cyclops for precision observation,” Oceans, San Diego, USA, September 2013. [16] Choi, H. T., Hanai, A., Choi, S. K., and Yuh, J., “Development of an underwater robot, ODIN-III,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, Vol. 1, October 2003, pp. 836-841. [17] Yuh, J., “Design and control of autonomous underwater robots: A survey,” Autonomous Robots, Vol. 8, No. 1, January 2000, pp. 7-24. [18] Craven, P. J., Sutton, R., and Burns, R. S., “Control strategies for unmanned underwater vehicles,” Journal of Navigation, Vol. 51, No. 1, January 1998, pp. 79-105. [19] García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L., Hernández-Alvarado, R., and Cruz-Ledesma, J. A., “Modelling, design and robust control of a remotely operated underwater vehicle,” International Journal of Advanced Robotic Systems, Vol. 11, January 2014, pp. 1-10. [20] Moraes, H. F., Sales, R. M., Cumming, H., and Silva, W. M., “A comparative study of some control systems for a submersible,” IEEE Symposium on Autonomous Underwater Vehicle Technology, Cambridge, MA, USA, July 1994, pp. 242-246. [21] Nag, A., Patel, S. S., and Akbar, S., “Fuzzy logic based depth control of an autonomous underwater vehicle,” International Multi- Conference on Automation, Computing, Communication, Control and Compressed Sensing, Kottayam, India , March 2013, pp. 117-123. [22] Naeem, W., Sutton, R., and Chudley, J., “System identification, modelling and control of an autonomous underwater vehicle,” IFAC proceedings volumes, Vol. 36, No. 21, September 2003, pp. 19-24.. [23] Yoerger, D. R., and Slotine, J. J., “Robust trajectory control of underwater vehicles,” IEEE Journal of Oceanic Engineering, Vol. 10, No. 4, October 1985, pp. 462-470. [24] Healey, A. J., and Lienard, D., “Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles,” IEEE Journal of Oceanic Engineering, Vol. 18, No. 3, July 1993, pp. 327-339. [25] Arshad, M. R., and Radzak, M. Y., “Design and development of an autonomous underwater vehicle test-bed (USM-AUV I),” Control, Automation, Robotics and Vision Conference, Kunming, China, December 2004. [26] Eng, Y., Lau, M., and Chin, C., “Added mass computation for control of an open-frame remotely-operated vehicle: Application using WAMIT and MATLAB,” Journal of Marine Science and Technology, Vol. 22, No. 2, August 2014, pp. 1-14. [27] Chin, C., and Lau, M., “Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control,” Journal of Marine Science and Application, Vol. 11, No. 2, June 2012, pp. 150-163. [28] McEwen, R., and Streitlien, K., “Modeling and control of a variable-length AUV,” 12th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, August 2001. [29] Radzak, M., and Arshad, M., “AUV controller design and analysis using full-state feedback,” Proceedings of the 9th WSEAS International Conference on Systems, Wisconsin, USA, July 2005. [30] Gonzalez, L. A., “Design, modelling and control of an autonomous underwater vehicle,” Bachelor of Engineering Thesis. The University of Western Australia, October 2004. | ||
آمار تعداد مشاهده مقاله: 16,913 |