تعداد نشریات | 38 |
تعداد شمارهها | 1,244 |
تعداد مقالات | 9,010 |
تعداد مشاهده مقاله | 7,872,492 |
تعداد دریافت فایل اصل مقاله | 4,722,310 |
بررسی تاثیر شکل و محل آسیب ایجاد شده در استحکام مقطع میانی یک شناور آلومینیومی دو بدنه ای نوین از نوع هارث | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
دوره 19، شماره 56، مرداد 1399، صفحه 64-81 اصل مقاله (1.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
ابراهیم سلیمانی* 1؛ محمدسعید سیف2 | ||
1دانشگاه صنعتی شریف، دانشکده مهندسی مکانیک | ||
2استاد، دانشگاه صنعتی شریف، قطب علمی هیدرودینامیک و دینامیک متحرکهای دریایی | ||
تاریخ دریافت: 08 تیر 1399، تاریخ بازنگری: 09 مرداد 1399، تاریخ پذیرش: 30 مرداد 1399 | ||
چکیده | ||
ورق های فلزی قسمت اصلی سازه کشتی ها و سازه های فرا ساحل را تشکیل می دهند. این ورق ها در معرض انواع نیرو های فشاری قرار دارند به همین دلیل یکی از اصلی ترین مکانیزم های شکست این سازه ها، خمش در ورق ها می باشد.به همین خاطر برای طراحی ایمن این سازه ها ، بررسی استحکام خمشی سازه لالزامی می باشد. بررسی سازه با استفاده از تکنیک المان محدود یکی از بهترین روش ها برای طراحی چنین سازه هایی می باشد.در این روش علاوه بر دقت و سرعت بالا ، توانایی شبیه سازی با متغیر های گوناگون وجود دارد.سازه شناورها به روش های مختلفی ممکن است در معرض آسیب قرار گیرند. آسیب ممکن است در قسمت های مختلف شناور و به شکل های متفاوتی مشاهده گردد.در ایت تحقیق، ورق های آومینیومی آسیب دیده بصورت عددی مورد مطالعه قرار گرفته است .در این تحقیق مشاهده گردید که که هرچه محل آسیب به لبه های ورق های آلومینیومی نزدیک تر باشد استحکام خمشی ورق ها کاهش خواهد یافت و همچنین مشاهده گردید که شکل آسیب تاثیر کمی در استحکام ورق دارد.در این تحقیق برای بررسی تاثیر آسیب بر مجموعه ای از ورق ها و استحکام دهنده ها در دو حالت سالم و آسیب دیده،مقطع میانی یک فروند شناور هارث تحت گشتاور خمشی مورد بررسی قرار گرفت.مشاهده گردید که در صورتی که آسیب ایجاد شده در ناحیه کف و دک شناور اتفاق افتد کاهش استحکام در کل شناوربطور قابل توجهی افزایش خواهد یافت. | ||
کلیدواژهها | ||
"شناور هارث"؛ "استحکام خمشی"؛ "روش المان محدود"؛ "سازه آلومینیومی"؛ "نیروی فشاری محوری"؛ "محل آسیب" | ||
عنوان مقاله [English] | ||
Sensitivity analysis of the influence of damaged location on mid-ship section of an Aluminum super slender catamaran(HARTH vessel) | ||
نویسندگان [English] | ||
Mohamad Saeed Seif2؛ | ||
2faculty of mechanical engineering of Sharif university of technology | ||
چکیده [English] | ||
Metal sheets are essential parts in structures such as hulls and offshore oil platforms. These sheets are typically exposed to axial compressive forces. Hence one of the main mechanisms for failure and collapse of such structures is buckling of sheets. Thus for a safe and reliable design, buckling strength of sheets should be evaluated. Finite element analysis techniques are perfect tools for this purpose, as they are of high speed and accuracy as well as flexibility for performing simulations with different variables.The ship structures are at risk of taking damages in many ways. The damage area can be of different locations and shapes. In the current study strength of aluminum damaged sheets has been studied using finite element analysis software. It was found that the closer the damage location to the edges of aluminum plates, the lower strength of plate under buckling due to decrease in effective width. Also it was found that as long as the width of damages are constant, the shape of damages have minor effect on strength of plates. In order to study the buckling behavior of a combination of plates and stiffeners in intacted and damaged conditions, a mid-ship section of a novel aluminum super slender catamaran(HARTH vessel) is modeled under bending moment. It was observed that, if damages are located on deck and bottom area, the total strength is decreased significantly . | ||
کلیدواژهها [English] | ||
"HARTH Vessel", "Buckling Strength", "Finite Element Approach (FEA)", "Aluminum Hull Structure", "Compressive Axial Force", "Damaged Location" | ||
مراجع | ||
[1] B. Bedair, Recent developments in analysis of deteriorating stiffened panels subjected to static and explosive forces, Multidiscipline Modeling in Materials and Structures Vol. 9, No. 1, pp 62-80, 2013. [2] Lee YW, Paik JK, Thayamballi AK, Currey R. A novel concept for structural design and construction of vessels—using aluminium honeycomb sandwich panels. Transactions of the Society of Naval Architects and Marine Engineers1996;105:285–302. [3] Kennell C, Lavis DR, Templeman MT. High speed sealift technology. MarineTechnology 1998;3:135–50. [4] Spencer JS. Structural design of aluminium crewboats. Marine Technology1975;12(3):267–74. [5] Henrickson WA, Spencer JS. A synthesis of aluminium crewboat structural design. Marine Technology 1982;19(1):52–72. [6] Latorre R, Herrington PD, Folse MD, Uno-swiftships development of a cost effective aluminium catamaran structure. GCRMTC Final Report Project no.95-10, January 1997. [7] Latorre R, Mattei N, Herrington P, Development of design guidelines to minimize high-speed catamaran hull motions and structural cracking. Final Report, GCRMTC Research project 95–10, June 1999. [8] Kristensen QHH, Moan T, Ultimate strength of aluminium plates under biaxial loading, Proceedings of the Fifth Internation Conference on Fast Sea Transportation, New York, 1999. [9] G. Wang, Y. Chen, H. Zhang, Yung Shin, Residual Strength of Damaged Ship Hull, Ship structures for the new millennium 13-14, 2000. [10] Kh. M. El-Sawy, S. Nazmy, Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes, thin-walled structures 39.12, pp 983-998, 2001. [11] Paik JK, et al. The statistics of weld induced initial imperfections in aluminum stiffened plate structures for marine applications. International Journal of Maritime Engineering 2006;148(4):19–63. [12] Collette MD, The impact of fusion welds on the ultimate strength of aluminum structures. Proceedings of PRADS 2007, Houston, USA. [13] Paik JK. Empirical formulations for predicting the ultimate compressive strength of welded aluminum stiffened panels. Thin-Walled Structures 2007;45:171–84. [14] Mohammad Reza Khedmati, Abbas Bayatfar, Philippe Rigo. Post-buckling behaviour and strength of multi-stiffened aluminium panels under combined axial compression and lateral pressure. Marine Structures 2010; 23:39–66. [15] J. M. Underwood, A. J. Sobey, J. I. R. Blake, R. Ajit Shenoi, Ultimate collapse strength assessment of damaged steel-plated structures, Engineering Structures 38, pp 1–10, 2012. [16] S. Gui-Jie, W. De-Yu, Ultimate strength model experiment regarding a container ship’s hull structures, Ships and Offshore Structures ,Vol. 7, No. 2, 165–184, 2012. [17] D. Saydam, D. M. Frangopol, Performance assessment of damaged ship hulls, Ocean Engineering68,pp 65–76, 2013. [18] ] N.E. Shanmugam, Zhu Dongqi, Y.S. Choo, M. Arockiaswamy. Experimental studies on stiffened plates under in-plane load and lateral pressure. Thin-Walled Structures 2014; 80:22–31. [19] M. Tekgoz, Y. Garbatov, C. Guedes Soares. Ultimate strength assessment of welded stiffened plates. Engineering Structures 2015; 84:325–339. [20] yan zhang, Yi Huang, Fanlei Meng. Ultimate strength of hull structural stiffened plate with pitting corrosion damage under unaxial compression. Marine Structures 2017; 56:117–136. [21] Ming Cai Xu, C. Guedes Soares.Assessment of residual ultimate strength for wide dented stiffened panels subjected to compressive loads. Engineering Structures 49 (2013) 316–328. [22] Irene C. Scheperboer a, Evangelos Efthymiou b, Johan Maljaars. Local buckling of aluminium and steel plates with multiple holes. Thin-Walled Structures 99 (2016) 132–141. [23]S. Saad-Eldeen, Y. Garbatov, C. Guedes Soares. Ultimate strength analysis of highly damaged plates. Marine Structures 45 (2016) 63e85. [24] Malgorzata Witkowska , C. Guedes Soares, Ultimate strength of locally damaged panels. Thin-Walled Structures 97 (2015) 225–240. [25] Burak Can Cerik, Ultimate strength of locally damaged steel stiffened cylinders under axial compression. Thin-Walled Structures 95 (2015) 138–151. [26] Zhigang Li, Dingni Zhang, Chunlei Peng, Chunsheng Ma, Jinhuan Zhang, Zhongmin Hu, Jiazhen Zhang, Yanan Zhao, the effect of local dents on the residual ultimate strength of 2024-T3 aluminum alloy plate used in aircraft under axial tension tests. Engineering Failure Analysis 48 (2015) 21–29. [27] S. Saad-Eldeen , Y. Garbatov, C. Guedes Soares, stress–strain analysis of dented rectangular plates subjected to uni-axial compressive loading. Engineering Structures 99 (2015) 78–91. [28] Mohsen Mohammadi, Mohammad Reza Khedmati and Karim Akbari Vakilabadi(2015). Effects of hull damage on global loads acting on a trimaran ship.Ships and Offshore Structures, Vol. 10, No. 6, 635–652. [29] Anuar AbuBakar , R.S. Dow, Simulation of ship grounding damage using the finite element method. International Journal of Solids and Structures 50 (2013) 623–636. [30] Bin Liu, C. Guedes Soares, Simplified analytical method for evaluating web girder crushing during ship collisionand grounding. Marine Structures 42 (2015) 71e94. [31] Bin Sun , Zhiqiang Hu , *, Ge Wang, An analytical method for predicting the ship side structure response in raked bow collisions. Marine Structures 41 (2015) 288e311. [32] J.N. Marinatos, M.S. Samuelides, Towards a unified methodology for the simulation of rupture in collision and grounding of ships. Marine Structures 42 (2015) 1e32. [33] Ebrahim Soleimani, Mohammad Reza Tabeshpour, Mohammad Saeed Seif. 2019. Parametric study of buckling and post- buckling behavior for an aluminum hull structure of a high-aspect-ratio twin hull vessel. Journal of Engineering for the Maritime Environment. [34] M. Suneel Kumar, P. Alagusundaramoorthy, R. Sundaravadivelu, ULTIMATE STRENGTH OF SQUARE PLATE WITH RECTANGULAR OPENING UNDER AXIAL COMPRESSION, Journal of Naval Architecture and Marine Engineering, June x, pp 15-26 ,2007. [35] C. Yu, J. Lee, Ultimate strength of simply supported plate with opening under uniaxial compression, Inter J Nav Archit Oc Engng 4, pp 423-436, 2012. [36] J. Underwood, A. Sobey, J. Blake, R. Ajit Shenoi, Ultimate collapse strength assessment of damaged steel-plated structures, Engineering Structures 38, pp 1–10, 2012. [37] John A.W. Sajdak(2004). Analyses of Ship Collisions: Determination of Longitudinal Extent of Damage and Penetration. Ph.D. theses. Virginia Tech, Blacksburg, VA, USA. [38] Seif, M.S. and Tavakoli, M.T., 2004. New technologies for reducing fuel consumption in marine vehicles. In XVI SORTA Symposium, Croatia. [39]M. B. Bashir, "Strength and hydrodynamic performance of a multihull vessel," 2014. Submitted for the degree of Doctor of Philosophy, School of Marine Science and Technology, Newcastle University,United Kingdom. [40] Hydro lance corporation, http://www.hydrolance.net/. [41] Benson, S., Downes, J. & Dow, R. S. 2013. Compartment level progressive collapse analysis of lightweight ship structures. Marine Structures, 31, 44–62. [42] E. Alfred Mohammed, S.D. Benson, S.E. Hirdaris, Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis. Marine Structures 46 (2016) 78e101. [43] S. Benson, J. Downes, R. S. Dow.2011.Ultimate strength characteristics of aluminium plates for high-speed vessels. Ships and Offshore Structures, , 6:1-2, 67-80. | ||
آمار تعداد مشاهده مقاله: 16,793 تعداد دریافت فایل اصل مقاله: 135 |