تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,829 |
تعداد دریافت فایل اصل مقاله | 4,706,453 |
استخراج تصویر از اهداف با حرکت غیریکنواخت و شتاب ثابت در رادار دهانه ترکیبی معکوس مبتنی بر حسگری فشرده | ||
پدافند الکترونیکی و سایبری | ||
دوره 9، شماره 2 - شماره پیاپی 34، تیر 1400، صفحه 51-62 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
رحیم انتظاری* 1؛ علیجبار رشیدی2 | ||
1دانشگاه صنعتی مالک اشتر، تهران، ایران | ||
2دانشگاه صنعتی مالک اشتر | ||
تاریخ دریافت: 26 تیر 1399، تاریخ بازنگری: 18 آبان 1399، تاریخ پذیرش: 22 دی 1399 | ||
چکیده | ||
در تصویربرداری مبتنی بر حسگری فشرده (CS) در رادار دهانه ترکیبی معکوس (ISAR)، معمولاً حرکت یکنواختی برای اهداف در نظر گرفته میشود. بااینحال معمولاً در سناریوهای عملی، اهداف دارای حرکت غیریکنواخت هستند که این حرکت باعث ایجاد شیفت فرکانس داپلر متغیر با زمان شده و تصویر ISAR دچار ماتی خواهد شد. همچنین ازآنجاکه ماتریس پایه مورداستفاده در تصویربرداری ISAR مبتنی بر حسگری فشرده به پارامترهای حرکت چرخشی وابسته است، مقادیر این پارامترها نیز باید تخمین زده شود. این در حالی است که معمولاً رفتار اهداف نسبت به رادار بهصورت همکارانه در نظر گرفته میشود؛ یعنی فرض میشود که حرکت اهداف از دید رادار از قبل شناختهشده است و مسئله تخمین پارامترها در نظر گرفته نمیشود. در این مقاله، روشی بهبودیافته بهمنظور استخراج تصویر مبتنی بر حسگری فشرده برای حرکت غیریکنواخت با شتاب ثابت و غیرهمکارانه اهداف پیشنهاد و بهترین نمایش تنک برای ماتریس پایه استخراج شده است. نتایج شبیهسازی نشان میدهد که الگوریتم پیشنهادی کارایی بهتری نسبت به سایر روشها حتی بدون جبران سازی حرکت چرخشی دارد و همچنین کنتراست تصویر بالاتری ارائه میکند. | ||
کلیدواژهها | ||
رادار دهانه ترکیبی معکوس (ISAR)؛ حرکت غیریکنواخت؛ نمونه برداری فشرده (CS)؛ ماتریس پایه | ||
عنوان مقاله [English] | ||
Inverse Synthetic Aperture Radar (ISAR) Imaging of Targets with Non-Uniform Motion and Constant Acceleration based on Compressed Sensing | ||
نویسندگان [English] | ||
R. Entezari1؛ A. J. Rashidi2 | ||
2Malek-e-Ashtar University of Technology (MUT), Tehran, IRAN | ||
چکیده [English] | ||
Compressed sensing (CS)-based inverse synthetic aperture radar (ISAR) imaging usually considers the uniform motion of targets. However, in practical scenarios, the targets usually have non-uniform motion, which creates the time-varying Doppler frequency shift and the ISAR image is blurred. Also, the basis matrix used in CS-based ISAR imaging is related to the rotational motion parameters which should be estimated too. However, the targets are assumed to have cooperative behavior with respect to radar; that is the target motion is known a priori and parameter estimation is not considered. In this paper, an improved version of CS-based imaging for non-uniform motion with constant acceleration and non-cooperative targets is proposed and best sparse representation is extracted. Simulation results show that the proposed algorithm is more efficient than other methods even without rotational motion compensation and provide higher image contrast. | ||
کلیدواژهها [English] | ||
Inverse Synthetic Aperture Radar (ISAR), Non-uniform motion, Compressed sensing (CS), Basis Matrix | ||
مراجع | ||
[1] M. Martorella, E. Giusti, L. Demi, Z. Zhou, A. Cacciamano, F. Berizzi, and B. Bates, “Target recognition by means of polarimetric ISAR images,” IEEE TAES, vol. 47, no. 1, pp. 225–239, Jan. 2011.## [2] D. Pastina and C. Spina, “Multi-feature based automatic recognition of ship targets in ISAR,” IET radar, sonar & nav, vol. 3, no. 4, pp. 406–423, Aug. 2009.## [3] S. Askari and M. Kazerooni, “Time Frequency Analysis of two Dimensional Shift Frequency Jamming in Image of Synthetic Aperture Radar with Diving Platform Using Passive Defense,” Journal of Electronical & Cyber Defence, vol. 4, no. 3, pp. 61-70, 2016. (In Persian)## [4] Z.-S. Liu, R. Wu, and J. Li, “Complex ISAR imaging of maneuvering targets via the capon estimator,” IEEE Trans on Signal Processing, vol. 47, no. 5, pp. 1262–1271, May. 1999.## [5] K. Suwa and M. Iwamoto, “A two-dimensional bandwidth extrapolation technique for polarimetric synthetic aperture radar images,” IEEE TGRS, vol. 45, pp. 45-54, 2007.## [6] L. Zhang, M. Xing, C.W. Qiu, J. Li, and Z. Bao, “Achieving higher resolution ISAR imaging with limited pulses via compressed sampling,” IEEE GRSL, vol. 6, no. 3, pp. 567–571, July. 2009.## [7] D. L. Donoho, “Compressed sensing,” IEEE Trans on information theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.## [8] L. Zhang, M. Xing, C. W. Qiu, J. Li, J. Sheng, Y. Li, and Z. Bao, “Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing,” IEEE TGRS, vol. 48, no. 10, pp. 3824–3838, Oct. 2010.## [9] H. Wang, Y. Quan, M. Xing, and S. Zhang, “ISAR imaging via sparse probing frequencies,” IEEE GRSL, vol. 8, no. 3, pp. 451–455, May. 2011.## [10] J. Lv, L. Huang, Y. Shi, and X. Fu, “Inverse synthetic aperture radar imaging via modified smoothed l0 norm,” IEEE AWPL, vol. 13, pp. 1235–1238, June. 2014.## [11] G. Li, Q. Hou, S. Xu, and Z. Chen, “Multi-target simultaneous ISAR imaging based on compressed sensing,” EURASIP J. Adv. Signal Processing, vol. 2016, no. 1, pp. 1–11, Feb. 2016.## [12] L. Zhang, H. Wang, and Z.-j. Qiao, “Resolution enhancement for ISAR imaging via improved statistical compressive sensing,” EURASIP J. Adv. Signal Processing, vol. 2016, no. 1, p. 80, July. 2016.## [13] R. Entezari and A. J. Rashidi, “Inverse Synthetic Aperture Radar (ISAR) Imaging of Targets with Non-Uniform Motion,” Tabriz Journal of Electrical Engineering (TJEE), vol. 47, pp. 391-400, 2017. (In Persian)## [14] J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE TAES, pp. 23-52, 1980.## [15] Y. Wang, “Inverse synthetic aperture radar imaging of maneuvering target based on range-instantaneous-Doppler and range-instantaneous chirp-rate algorithms,” IET radar, sonar & nav, vol. 6, no. 9, pp. 921–928, Dec. 2012.## [16] J. Zheng, T. Su, W. Zhu, L. Zhang, Z. Liu, and Q. H. Liu, “ISAR imaging of non-uniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal,” IEEE TGRS, vol. 53, no. 9, pp. 4727–4740, Sept. 2015.## [17] J. Liu, X. Li, S. Xu, and Z. Zhuang, “ISAR imaging of non-uniform rotation targets with limited pulses via compressed sensing,” PIER B, vol. 41, pp. 285–305, June 2012.## [18] Z. Liu, P. You, X. Wei, and X. Li, “Dynamic ISAR imaging of maneuvering targets based on sequential SL0,” IEEE GRSL, vol. 10, no. 5, pp. 1041–1045, Sept. 2013.## [19] A. S. Khwaja and X.-P. Zhang, “Compressed sensing ISAR reconstruction in the presence of rotational acceleration,” IEEE JSTARS, vol. 7, no. 7, pp. 2957–2970, July 2014.## [20] A. S. Khwaja and M. Cetin, “Compressed sensing ISAR reconstruction considering highly maneuvering motion,” Electronics, vol. 6, no. 1, p. 21, Mar. 2017.## [21] G. Xu, M. Xing, L. Yang, and Z. Bao, “Joint approach of translational and rotational phase error corrections for high-resolution inverse synthetic aperture radar imaging using minimum-entropy,” IET radar, sonar & nav, vol. 10, no. 3, pp. 586–594, Mar. 2016.## [22] L. Zhang, Z. Qiao, M. Xing, Y. Li, and Z. Bao, “High-resolution ISAR imaging with sparse stepped-frequency waveforms,” IEEE TGRS, vol. 49, no. 11, pp. 4630–4651, Nov. 2011.## [23] G. Li, H. Zhang, X. Wang, and X. G. Xia, “ISAR 2-D imaging of uniformly rotating targets via matching pursuit,” IEEE TAES, vol. 48, no. 2, pp. 1838–1846, Apr. 2012.## [24] W. Rao, G. Li, X. Wang, and X. G. Xia, “Adaptive sparse recovery by parametric weighted l1 minimization for ISAR imaging of uniformly rotating targets,” IEEE JSTARS, vol. 6, no. 2, pp. 942–952, Apr. 2013.## [25] M.S. Kang and K.T. Kim, “ISAR imaging and cross-range scaling of high-speed maneuvering target with complex motion via compressive sensing,” IET radar, sonar & nav, 2017.## [26] S. R. Axelsson, “Analysis of random step frequency radar and comparison with experiments,” IEEE TGRS, vol. 45, no. 4, pp. 890–904, Apr. 2007.## [27] E. J. Candès, “Compressive sampling,” in Proceedings of the ICM, pp. 1433-1452, 2006.## [28] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans on Information Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.## [29] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?,” IEEE trans on information theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.## [30] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Complex-valued sparse representation based on smoothed l0 norm,” presented at the IEEE ICASSP, Las Vegas, NV, USA, pp. 3881– 3884, 2008.## [31] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition,” in Proceedings of 27th Asilomar conference on signals, systems and computers, pp. 40-44, 1993.## [32] A. Rashidi, I. Faramarzi, and R. Entezari, “A Variational Bayesian approach to Block-Sparse Reconstruction based on Intra-Cluster Relevance,” in Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 692-696, 2019.## [33] R. Entezari and A. Rashidi, “Continuity pattern-based sparse Bayesian learning for inverse synthetic aperture radar imaging,” J. Appl. Remote Sens., vol. 12, p. 036010, 2018.## [34] V. C. Chen and W. Miceli, “Time-varying spectral analysis for radar imaging of maneuvering targets,” IEE Proceedings Radar, Sonar & Nav, vol. 145, no. 5, pp. 262–268, 1998.## [35] C. Ozdemir, “Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms,” John Wiley & Sons, vol. 210, 2012.## [36] T. Itoh, H. Sueda, and Y. Watanabe, “Motion compensation for ISAR via centroid tracking,” IEEE TAES, vol. 32, no. 3, pp. 1191–1197, July 1996.## [37] T. Thayaparan, L. Stankovic, C. Wernik, and M. Dakovic, “Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using s-method-based approach,” IET Signal Processing, vol. 2, no. 3, pp. 247–264, Sept. 2008.## [38] S. Werness, W. Carrara, L. Joyce and D. Franczak, “Moving target imaging algorithm for SAR data,” IEEE TAES, vol. 26, pp. 57-67, 1990.## [39] R. Lipps and D. Kerr, “Polar reformatting for ISAR imaging,” in IEEE Radar Conference, pp. 275-280, 1998.## [40] L. Applebaum, et al., “Chirp sensing codes: deterministic compressed sensing measurements for fast recovery,” Applied and Computational Harmonic Analysis, vol. 26, no. 2, pp. 283 – 290, Mar. 2009.## [41] W. Qiu, E. Giusti, A. Bacci, M. Martorella, F. Berizzi, H. Zhao, and Q. Fu, “Compressive sensing–based algorithm for passive bistatic ISAR with DVB-T signals,” IEEE Trans on AES, vol. 51, no. 3, pp. 2166–2180, 2015.## | ||
آمار تعداد مشاهده مقاله: 656 تعداد دریافت فایل اصل مقاله: 429 |