تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,070 |
تعداد دریافت فایل اصل مقاله | 4,706,662 |
ردیابی بی درنگ همبندگرای اشیاء میکروسکوپی | ||
پدافند الکترونیکی و سایبری | ||
دوره 9، شماره 3 - شماره پیاپی 35، آذر 1400، صفحه 1-20 اصل مقاله (1.97 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسنده | ||
امین اله مه آبادی* | ||
استادیار، دانشکده فنی مهندسی، دانشگاه شاهد، تهران، ایران | ||
تاریخ دریافت: 20 شهریور 1399، تاریخ بازنگری: 15 آبان 1399، تاریخ پذیرش: 05 بهمن 1399 | ||
چکیده | ||
ردیابی تصویری اشیاء میکروسکوپی از مهمترین مطالعاتپویای فرآیندهای بیولوژیکی و نیازمند روشهای قطعهبندی و ردیابیخودکار است. اغلب محدود بهمورفولوژی اشیاء یا بررسی انسانیمیشودو فاقد قدرت خودکارسازی ومقیاسپذیریجهت تشخیص اشیاء،ردیابیمسیر هر شیء وبررسیهمبندی آنها بههمراه تشخیص ناهنجاریهای مربوطهاست. این مقاله روشِسریعِ مقیاسپذیرِ عاملگرا برای تشخیصِ خودکار،ردیابیِبیدرنگویدیویی،ردیابی همزمان اشیاء میکروسکوپی، پایش رفتار هرشی و همبندی آنها براساس تئوری گراف قابلکاربرددر اینترنت اشیاء ارایه میکند که این محدودیتها را ندارد.روش قطعهبندی آن ترکیبی از تغییرات زمانی و مکانی تصویر جهت تشخیص اشیاء متحرک و پیشبینی مسیر حرکت آنها است و امکان تشخیص ناهنجاریهای فردی شیءمانند مرگشی،توقفشی متحرک، تصادم اشیاء، و خروج ناگهانیاز و ورود ناگهانیبه محدوده و ناهنجاریهای تغییراتهمبندیمانند تقسیمدستهها، تغییراتدسته، تجزیهدسته، تغییرفاصله دستهها، میرایی و فروپاشیشبکه را فراهم میسازد. نتایج آزمایشهای تجربی ردیابیاشیاء میکروسکوپی اسپرمها و پرندگان در تصاویر دوبعدی از فضای سهبعدی ویدیویی نشان میدهد کهدارای حساسیت 99% و دقت 97% تشخیص بیدرنگ اشیاءبا دقتردیابی بالای 99% است. در پایش و ردیابی همبندی و تصادم اشیاء اسپرم دارای دقت 8/99%ودر پرندگان بهدلیل نویزهای محیطی و خطایتشخیص در تغییرات سریع همبندی پرندگان دارای دقت 88% است. | ||
کلیدواژهها | ||
اینترنت هرچیز؛ ردیابی بی درنگ همبندگرا؛ ردیابی اشیاء میکروسکوپی؛ تشخیص ناهنجاری؛ الگوریتم توزیعی؛ داده های عظیم؛ پردازش تصویر | ||
عنوان مقاله [English] | ||
Real-time Topology-based Tracking of Microscopic Objects | ||
نویسندگان [English] | ||
Aminollah Mahabadi | ||
Assistant Professor, Faculty of Engineering, Shahed University, Tehran, Iran | ||
چکیده [English] | ||
Visual tracking of microscopic objects is one of the most important studies of dynamic biological processes and requires automated segmentation and tracking methods. It is often limited to the morphology of objects or human study and lacks the automation and scalability to detect objects, track the path of any object, and examine their topology with the detection of related anomalies. This paper presents a fast scalable agent-oriented method for automatic detection, real-time video tracking, simultaneous tracking of microscopic objects, monitoring object behavior, and their topology based on graph theory applicable to the Internet of Things. It has no mentioned restrictions. Its segmentation method is a combination of temporal and spatial changes of the image to detect moving objects and predict their movement path, and the possibility of detecting individual anomalies of the object (death, moving a stop, collision of objects, a sudden departure from and a sudden entry into processing frame). Provides abrupt onset and onset of anomalies (network splitting, batch changes, batch decomposition, batch spacing, attenuation, and network collapse). The results of experimental experiments to track microscopic objects of sperm and birds in 2D images of 3D video film show that it has 99% sensitivity and 97% accuracy of instantaneous detection of objects with 99% detection accuracy. In monitoring and tracking, correlation and collision of sperm objects have an accuracy of 99.8% and in birds due to environmental noise and error detection in rapid topology changes, birds have an accuracy of 88%. | ||
کلیدواژهها [English] | ||
Real-time Topology-based Tracking, Microscopic Objects, Anomaly Detection, Image Processing, Distributed Algorithm, Internet of Things (IoT), Big Data | ||
مراجع | ||
[1] Li. Wei, et al. “Robust Airplane Detection in Satellite Images,” 18th IEEE International Conference on Image Processing. 2011.## [2] P. Wang, et al. “A survey of techniques for mobile service encrypted traffic classification using deep learning,” IEEE Access. vol. 23, no. 7, pp. 54024-54033, 2019.## [3] W. Hui, et al. “Fast Aircraft Detection In Satellite Images Based On Convolutional Neural Networks,” International Conference on Image Processing. pp. 4210-4214, 2015.## [4] DS. Lakew, et al. “Routing in Flying Ad Hoc Networks: A Comprehensive Survey,” IEEE Communications Surveys & Tutorials. vol.22, no.2, pp. 1071-1120, 2020.## [5] T. Goswami, H. Sarma. “Intelligent Computing for Air Pollution Monitoring Using GIS, Remote Sensing and Machine Learning. Emerging Trends in Electrical,” Communications, and Information Technologies. pp.125-133, 2020.## [6] P. P. Gawade, R.P. “Chauhan. Detection of Lung Cancer Cells using Image Processing Techniques,” 1st IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems . pp.1-6, 2016.## [7] S. Ye , et al. “Extraction of Vascular Structure in 3D Cardiac CT Images by Using Object/Background Normalization,” Pattern Recognition and Image Analysis. vol.30, No.2, pp.237-246, 2020.## [8] ME. Özgur, et al. “A novel computer assisted sperm analyzer for assessment of spermatozoa motility in fish; BASA-sperm aqua,” El-Cezeri Journal of Science and Engineering. vol.6, No.1, pp.208-219, 2019.## [9] R. Yao, et al. “Video Object Segmentation and Tracking: A Survey,” ACM Transactions on Intelligent Systems and Technology (TIST). vol.11, no.4, pp.1-47, 2020.## [10] C. R. Srinivasan, et al. “A review on the different types of Internet of Things (IoT),” Journal of Advanced Research in Dynamical and Control Systems. vol.11, no.1, pp.154-158, 2019.## [11] Y. B. Zikria, et al. “Internet of Multimedia Things (IoMT): Opportunities,” Challenges and Solutions. p.2334, 2020.## [12] IG. Masdiyasa, et al. “Counting the Number of Active Spermatozoa Movements Using Improvement Adaptive Background Learning Algorithm,” International Journal of Artificial Intelligence Research. vol.4, no.1, 2020.## [13] D. Mayorca-Torres, et al. “Multi-Target Tracking for sperm motility measurement using the Kalman Filter and JPDAF: Preliminary Results,” Revista Ibérica de Sistemas e Tecnologias de Informação (E22). pp.282-294,2019.## [14] V.S. Abbiramy, et al. “Spermatozoa detection, counting and tracking in video streams to detect Asthenozoospermia,” Signal and Image Processing. pp.265-270,2010.## [15] IG. Masdiyasa, et al. “A new method to improve movement tracking of human sperms,” IAENG International Journal of Computer Science. vol.45, no.4, pp.1-9, 2018.## [16] OL. Şavkay, et al. “Sperm motility analysis system implemented on a hybrid architecture to produce an intelligent analyzer,” Informatics in Medicine Unlocked. p.100324,2020.## [17] B. Wang, et al. “Risk-Aware Identification of Highly Suspected COVID-19 Cases in Social IoT: A Joint Graph Theory and Reinforcement Learning Approach,” IEEE Access. vol.8, pp.115655-115661, 2020.## [18] A. Cook, et al. “Anomaly detection for IoT time-series data: A survey,” IEEE Internet of Things Journal. vol.7, no.7, pp.6481–6494, 2020.## [19] World Health Organization. “WHO laboratory manual for the examination of human semen and sperm-cervicalmucus interaction,” Fourth Edition. Cambridge University Press. 1999.## [20] H. Ehrig, et al. “Petri net technology for communication-based systems: advances in Petri Nets,” Springer Science & Business Media. 2003.## [21] B. Junker, et al. VANTED: “A system for advanced data analysis and visualization in the context of biological networks,” BMC Bioinf. vol.7, no.1, pp.1-3, 2006.## [22] A. Sackmann, M. Heiner and I. Koch, “Application of Petri net based analysis techniques to signal transduction pathways,” BMC Bioinf. vol.7, no.1, p.482, 2006.## [23] S. Grunwald, et al. “Petri net modelling of gene regulation of the Duchenne muscular dystrophy,” Biosystems. vol.92, no.2, pp.189-205, 2008.## [24] P. Corcoran. “Topology Based Object Tracking. Mathematical and Computational Applications,” vol.24, no.3, p.84, 2019.## [25] M. Patel, et al. “Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields,” Scientific Reports 8, no.1,pp.1-14,2018.## [26] M. Kramár, et al. “Analysis of Kolmogorov flow and Rayleigh-Bénard convection using persistent homology,” Phys. D Nonlinear Phenom. no.334, pp.82–98, 2016.## [27] R. Gonzalez-Diaz, et al. “Topological tracking of Connected Components in Image Sequences,” Journal of Computer and System Sciences. no.95, pp.134-142, 2018.## [28] P. Corcoran, C. B. Jones. “Spatio-temporal modeling of the topology of swarm behavior with persistence landscapes,” International Conference on Advances in Geographic Information Systems, pp.1-4, 2016.## [29] H. Liu, M. Schneider. “Detecting the Topological Development in a Complex Moving Region. Journal of Multimedia Processing and Technologies,” vol.1, no.3, pp.160–180, 2010.## [30] H. Liu, M. Schneider. “Tracking continuous topological changes of complex moving regions,” Symposium on Applied Computing. pp.833–838, 2011.## [31] M. Worboys, M. Duckham. “Monitoring qualitative spatio temporal change for geosensor networks,” International Journal of Geographical Information Science. vol.20, no.10, pp.1087-1108, 2006.## [32] J. Jiang, M. Worboys. “Event-based topology for dynamic planar areal objects,” International Journal of Geographical Information Science. vol.23, no.1, pp.33–60, 2009.## [33] D. Birant, A. Kut. “ST-DBSCAN: An algorithm for clustering spatial–temporal data,” Data & knowledge Engineering. vol.60, no.1, pp.208-221, 2007.## [34] M. Jiang, et al. “Multi-agent deep reinforcement learning for multi-object tracker,” IEEE Access. no.7, pp.32400-32407, 2019.## [35] M. Kraemer, et al. “Factors Influencing Human Sperm Kinematic Measurements by the Celltrak Computer-assisted Sperm Analysis System,” Human Reproduction. vol.13, no.3, pp.611–619, 1998.## [36] R. Vishnuvardhan, et al. “Automatic detection of flying bird species using computer vision techniques,” Journal of Physics: Conference Series. vol.1362, no.1, p.012112, 2019.## [37] https://datasets.simula.no/visem/## [38] https://arma.sourceforge.net/vb100/## | ||
آمار تعداد مشاهده مقاله: 1,214 تعداد دریافت فایل اصل مقاله: 1,079 |