تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,847,068 |
تعداد دریافت فایل اصل مقاله | 4,707,611 |
ارائه الگوریتم طراحی و شبیهسازی و ساخت آنتن موج نشتی سه فرکانسه مبتنی بر روش هولوگرافیک | ||
الکترومغناطیس کاربردی | ||
دوره 9، شماره 2 - شماره پیاپی 23، دی 1400، صفحه 47-58 اصل مقاله (1.89 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سمیه سعیدی1؛ فرخ حجت کاشانی* 2؛ نادر کمجانی برچلویی3 | ||
1دانشجوی کارشناسی ارشد، مخابرات میدان و موج، دانشکده مهندسی برق، دانشگاه علم و صنعت، تهران، ایران | ||
2استاد، دانشکده برق مهندسی برق، دانشگاه علم و صنعت، تهران، ایران | ||
3دانشیار، دانشگاه علم و صنعت، تهران، ایران | ||
تاریخ دریافت: 27 آبان 1399، تاریخ بازنگری: 25 بهمن 1399، تاریخ پذیرش: 12 تیر 1400 | ||
چکیده | ||
هدف اصلی این مقاله، اصلاح رابطه روش هولوگرافیک و ارائه الگوریتم طراحی آنتن موج نشتی چند فرکانسه فشرده با بیمهای تشعشعی مدادی در جهت پهلوآتش میباشد. در روند طراحی از سه نرمافزار HFSS، MATLAB و CST استفاده شده است. برای نمونه، یک آنتن موج نشتی صفحهای سه فرکانسه با بیمهای تشعشعی مدادی پهلوآتش با بهره 9/17، 5/18و 2/19دسیبل و سطح گلبرگ جانبی صفحات E و H کمتر از dB15- به ترتیب در فرکانسهای 16،15و17گیگاهرتز طراحی شده است. سلول واحد تشکیلدهنده سطح امپدانسی هولوگرام به شکل شش ضلعی منتظم انتخاب شده است تا همسانگردترین رفتار ممکن را در برابر موج سطحی داشته باشد. اصلاح رابطه هولوگرافیک منجر به امکان بهرهگیری از یک تغذیه موج سطحی با ساختار ساده برای داشتن تطبیق مناسب و همچنین قابلیت کنترل سطح گلبرگ جانبی در صفحات E و H آنتن در فرکانسهای طراحی شده است. در نهایت با ساخت و تست آنتن پیشنهادی صحت و سقم روند طراحی پیشنهادی راستیآزمایی شده است. در اندازهگیری الگوی تشعشعی صفحات E و H فرکانسهای مختلف در اتاق آنتن برای هر فرکانس، تغذیه متناظر با آن فرکانس تحریک و دو تغذیه دیگر تطبیق کامل در نظر گرفته شدهاند. در نهایت، همخوانی خوبی بین نتایج شبیهسازی و اندازهگیری مشاهده شده است. | ||
کلیدواژهها | ||
آنتن هولوگرافی؛ آنتنهای موج نشتی؛ آنتن چند فرکانسه فشرده؛ سطح گلبرگ جانبی | ||
عنوان مقاله [English] | ||
Presentation of an Algorithm for Design, Simulation and Construction of a Triple Frequency Leaky-wave Antenna Based on the Holographic Technique | ||
نویسندگان [English] | ||
somaye saeidi1؛ Farokh Hojat Kashani2؛ Nader Komjani3 | ||
1Master Student, Field and Wave Telecommunications, Faculty of Electrical Engineering, University of Science and Technology, Tehran, Iran | ||
2Professor, Faculty of Electrical Engineering, University of Science and Technology, Tehran, Iran | ||
3Associate Professor, University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
The main purpose of this paper is to modify the holographic technique relationship (formula) and to present an algorithm for the design of multiple frequency compact leaky-wave antennas with broadside pencil beam radiation. In the design process, the following three software HFSS, MATLAB and CST, have been utilized. As a prototype, a triple frequency planar leaky-wave antenna is designed with the SLL less than -15 dB at E and H planes and broadside pencil radiation gain of 17.9, 18.5 and 19.2 dB at 15, 16 and 17 GHz, respectively. The unit cell forming the impedance surface of the hologram is selected as a regular hexagon to have the most isotropic behavior in response to the surface wave. Modification of the holographic relationship leads to the possibility of using a surface wave feed with a simple structure for proper matching as well as controlling the SLL on the E and H planes of the antenna radiation pattern at the designed frequencies. Eventually, by constructing and testing the proposed antenna, the accuracy of the proposed design process has been verified. In measuring the radiation pattern of the E and H planes of the different frequencies in the antenna room for each frequency, the launcher corresponding to that frequency receives the excitation and the other two launchers are perfectly matched. Finally, a good agreement is observed between the simulation and measurement results. | ||
کلیدواژهها [English] | ||
: Holgraphic Antenna, Leaky-wave Antennas, Compact Multiple frequency Antenna and, Side Lobe Level (SLL) | ||
مراجع | ||
[1] M. Okhovat and Y. Qaneh Qarehbagh, “Design of Corrugated Metallic Periodic Leaky Wave Antenna with Constant Depth and Variable Width at X_band Frequency,” Scientific Journal of Applied Electromagnetics, 2020. (In Persian)#3 [2] D. R. Jackson, A. A. Oliner, and C. Balanis, “Modern antenna handbook,” In Leaky-Wave Antennas, Wiley, 2008.## [3] F. L. Whetten and A. C. Balanis, “Meandering long slot leaky-wave waveguide-antennas,” IEEE Transactions on antennas and propagation, vol. 39, pp. 1553-1560, no. 11, 1991.## [4] P. F. Checcacci, V. Russo, and A. M. Scheggi, “Holographic antennas,” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 2165–2167, November 1968.## [5] G. D. Cochran, “Holographic techniques applied to non-visible wave fields,” in Antennas and Propagation Society International Symposium, vol. 5, p. 193, 1967.## [6] Y. Li, Q. Zhu, and R. Mo, “Studies on the holographic antenna: Theories and experiments,” in Asia-Pacific Microwave Conference Proceedings (APMC), pp. 654–657, 2011.## [7] M. Albani, M. Bandinelli, F. Caminita, P. D. Vita, A. Freni, S. Maci, A. Mazzinghi, G. Minatti, and M. Sabbadini, “Holographic antennas: Principle of operation and design guidelines,” in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP, pp. 1–3, 2010.## [8] A. M. Patel, “Controlling electromagnetic surface waves with scalar and tensor impedance surfaces,” University of Michigan, 2013.## [9] C. Rusch, J. Schäfer, H. Guian, and T. Zwick, “2D-scanning holographic antenna system with Rotman-lens at 60 GHz,” In Antennas and Propagation (EuCAP), pp. 196-199, Apr. 2014.## [10] L. Novotny, “The history of near-field optics,” Prog. Opt. 50, vol. 50, 2007.## [11] G. Minatti, S. Maci, P. De Vita, A. Freni, and M. Sabbadini, “A circularly-polarized isoflux antenna based on anisotropic metasurface,” IEEE Trans. On Antennas and Propagation, vol. 60, no. 11, pp. 4998- 5009, November 2012.## [12] D. González-Ovejero, G. Chattopadhyay, and S. Maci, “Multiple beam shared aperture modulated metasurface antennas,” Proc. IEEE AP-S Soc. Int. Symp, pp. 101-102, Jun/Jul. 2016.## [13] M. Gabriele, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. González-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Transactions on Antennas and Propagation, vol. 63, pp. 1288-1300, 2015.## [14] M. Karimipour and N. Komjani, “Holographic-inspired multibeam reflectarray with linear polarization,” IEEE Transactions on Antennas and Propagation, vol. 66, pp. 2870-2882, no. 6, 2018.## [15] R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: MaGraw-Hill Book Company, pp. 1-129, 1961.## [16] B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F.Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 10, Oct. 2010. ## [17] A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface”, IEEE Trans. Antennas Propag., vol. 59, no. 6, pp. 2087-2096, 2011.## [18] L. Yun Bo, X. Wan, B. Geng Cai, Q. Cheng, and T. Jun Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Scientific reports 4, p. 6921, 2014.## [19] Ch. Rusch, Handbook of Antenna Technologies, Springer Science Business Media Singapore, 2015.## [20] D. Oca, M. A. Montes, T. Stutzle, M. Birattari, and M. Dorigo, “Frankenstein's PSO: a composite particle swarm optimization algorithm,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1120-1132, 2009.## | ||
آمار تعداد مشاهده مقاله: 515 تعداد دریافت فایل اصل مقاله: 422 |