تعداد نشریات | 38 |
تعداد شمارهها | 1,244 |
تعداد مقالات | 9,010 |
تعداد مشاهده مقاله | 7,872,198 |
تعداد دریافت فایل اصل مقاله | 4,722,130 |
طراحی و شبیه سازی بازیابی حرارت اتلافی اگزوز موتور ایزوتای شناورGM برای تولید توان الکتریکی در محرک های انعطاف پذیر گرمایی | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
مقاله 2، دوره 19، شماره 57، بهمن 1399، صفحه 12-25 اصل مقاله (798.29 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
شهروز عباسی نژاد1؛ سیروس آقانجفی2؛ آرمان معروفی* 3؛ قاسم اکبری3 | ||
1دانشجوی دکتری مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران | ||
2استاد، دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران | ||
3استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران | ||
تاریخ دریافت: 06 آبان 1399، تاریخ بازنگری: 26 بهمن 1399، تاریخ پذیرش: 12 اسفند 1399 | ||
چکیده | ||
در این مقاله، یک روش جدید برای بازیابی حرارت اتلافی اگزوز موتور ایزوتا شناورGM و تبدیل آن به الکتریسیته با استفاده از یک محرک انعطاف پذیر گرمایی ارائه خواهد شد. محرک انعطاف پذیر مورد نظر از 3 بازوی موازی شامل بازوهای گرم و سرد برای کنترل دما و تولید توان الکتریکی استفاده می کند. همچنین برای کنترل حرارت های اتلاقی از 3 عدد dimpel در کوتاه ترین بازو برای پایداری حرارتی استفاده شده است. به عبارت دیگر، هدف از مقاله حاضر توسعهی یک روش انتقال حرارت غیر فعال (یا پسیو) و یک سیستم مولّد گرما به کار به منظور بازیابی حرارت اتلافی جهت تولید توان الکتریکی می باشد. طرح پیشنهادی دارای اندازه 40µm × 250µm بوده و در نرم افزار کامسول 2018 پیاده سازی و شبیه سازی شده است. نتایج شبیه سازی برای طرح پیشنهادی با ولتاژ 5 ولت و بیشینه دمای 550 کلوین در مقایسه با کارهای مشابه FOM قابل قبولی از خود ارائه میدهد و نسبت به بهترین طرح مقدار 3/2 برابر و نسبت به بدترین طرح مقدار 2700 برابر بهبود نشان می دهد. | ||
کلیدواژهها | ||
غیر فعال؛ تولید توان؛ بازیابی حرارتی و بازوهای انعطاف پذیر | ||
عنوان مقاله [English] | ||
Design and simulation of heat dissipation exhaust of GM Isotta floating engine for generating electrical power in flexible thermal actuators | ||
نویسندگان [English] | ||
shahrooz abbasi nezhad1؛ Sirus Agha najafi2؛ Arman Maroufi3؛ Ghasem Akbari3 | ||
1Phd Student inmechanical engineering, Islamic Azad University, Qazvin Unit, Qazvin, Iran | ||
2Professor of The Faculty of Mechanical Engineering, Khajeh Nasir al-din Tusi University, Tehran, Iran | ||
3Assistant Professor, Mechanical Engineering Group, Islamic Azad University, Qazvin Unit, Qazvin, Iran | ||
چکیده [English] | ||
In this paper, a new method was presented for recovering dissipated heat in the exhaust of GM Isota floating engine and converting it to electricity using a flexible thermal anchor. The flexure uses three parallel arms including the hot and cold arms to control temperature and generate electrical power. Also, three dimples were used in the shortest arm for thermal stability in order to control the core temperatures. In other words, the purpose of the present paper was developing a passive heat transfer method and a heat generating system was employed for recovering dissipated heat to generate electrical power. Size of proposed design was equal to 40µm × 250µm, and it was implemented and simulated in COMSOL software 2018. Simulation results for proposed design with the voltage of 5V and maximum temperature of 550K presented acceptable FOM compared to similar work such that it showed the value of 2.3 times relative to the best design ,and it was 2700 times better compared to the worst design. | ||
کلیدواژهها [English] | ||
Passive, Power generation, Heat recovery, Flexible anchors | ||
مراجع | ||
[1] Liu, X., Deng, Y. D., Li, Z., & Su, C. Q. (2015). Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Conversion and Management, 90, 121-127. [2] Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy conversion and management, 111, 147-157. [3] Zou, S., Kanimba, E., Diller, T. E., Tian, Z., & He, Z. (2018). Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator. Science of The Total Environment, 635, 1215-1224. [4] Zhang, H., Kong, W., Dong, F., Xu, H., Chen, B., & Ni, M. (2017). Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 148, 1382-1390. [5] Junior, O. H. A., Calderon, N. H., & de Souza, S. S. (2018). Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery. Energies, 11(6), 1-13. [6] Patil, D. S., Arakerimath, R. R., & Walke, P. V. (2018). Thermoelectric materials and heat exchangers for power generation–A review. Renewable and Sustainable Energy Reviews, 95, 1-22. [7] Ding, L. C., Akbarzadeh, A., Singh, B., & Remeli, M. F. (2017). Feasibility of electrical power generation using thermoelectric modules via solar pond heat extraction. Energy Conversion and Management, 135, 74-83. [8] Shu, G., Zhao, J., Tian, H., Liang, X., & Wei, H. (2012). Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy, 45(1), 806-816. [9] Yazawa, K., & Shakouri, A. (2011). Cost-efficiency trade-off and the design of thermoelectric power generators. Environmental science & technology, 45(17), 7548-7553. [10] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and management, 91, 110-119. [11] Zheng, X. F., Liu, C. X., Yan, Y. Y., & Wang, Q. (2014). A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications. Renewable and sustainable energy reviews, 32, 486-503. [12] Fleurial, J. P. (2009). Thermoelectric power generation materials: Technology and application opportunities. Jom, 61(4), 79-85. [13] Li, G., Zhang, G., He, W., Ji, J., Lv, S., Chen, X., & Chen, H. (2016). Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. Energy Conversion and Management, 112, 191-198. [14] Li, G., Zhang, G., He, W., Ji, J., Lv, S., Chen, X., & Chen, H. (2016). Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. Energy Conversion and Mana [15] Cao, Q., Luan, W., & Wang, T. (2018). Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Applied Thermal Engineering, 130, 1472-1479. [16] Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy conversion and management, 111, 147-157. [17] Sasaki, K., Horikawa, D., & Goto, K. (2015). Consideration of thermoelectric power generation by using hot spring thermal energy or industrial waste heat. Journal of Electronic Materials, 44(1), 391-398. [18] Chen, J., Zuo, L., Wu, Y., & Klein, J. (2016). Modeling, experiments and optimization of an on-pipe thermoelectric generator. Energy conversion and management, 122, 298-309. [19] Meng, F., Chen, L., Sun, F., & Yang, B. (2014). Thermoelectric power generation driven by blast furnace slag flushing water. Energy, 66, 965-972. [20] Zheng, X. F., Liu, C. X., Boukhanouf, R., Yan, Y. Y., & Li, W. Z. (2014). Experimental study of a domestic thermoelectric cogeneration system. Applied Thermal Engineering, 62(1), 69-79. [21] Lesage, F. J., & Pagé-Potvin, N. (2013). Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy conversion and management, 66, 98-105. [22] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and management, 91, 110-119. [23] Date, A., Date, A., Dixon, C., & Akbarzadeh, A. (2014). Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Solar energy, 105, 656-668. [24] Gouws, R., & Eilers, H. (2013). A review on thermoelectric cooling modules: Installation design, performance and efficiency. [25] Ma, M., & Yu, J. (2014). An analysis on a two-stage cascade thermoelectric cooler for electronics cooling applications. International journal of refrigeration, 38, 352-357. [26] Crane, D., LaGrandeur, J., Jovovic, V., Ranalli, M., Adldinger, M., Poliquin, E., ... & Maranville, C. (2013). TEG on-vehicle performance and model validation and what it means for further TEG development. Journal of electronic materials, 42(7), 1582-1591. [27] Chen, J., Zuo, L., Wu, Y., & Klein, J. (2016). Modeling, experiments and optimization of an on-pipe thermoelectric generator. Energy conversion and management, 122, 298-309. [28] Al-Zandi, M. H., Wang, C., Voicu, R., & Muller, R. (2018). Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsystem Technologies, 24(1), 379-387. [29] Somà, A., Iamoni, S., Voicu, R., Müller, R., Al-Zandi, M. H., & Wang, C. (2018). Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsystem Technologies, 24(2), 1053-1060. [30] Nakic, C., Bieker, J., Lämmle, D., Winterstein, T., Schlaak, H. F., Schaumann, G., & Abel, T. (2016, July). Development of an electrothermal micro positioning platform for laser targets with two degrees of freedom. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) (pp. 1-5). IEEE. [31] Lara-Castro, M., Herrera-Amaya, A., Escarola-Rosas, M., Vázquez-Toledo, M., López-Huerta, F., Aguilera-Cortés, L., & Herrera-May, A. (2017). Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption. Micromachines, 8(7), 203. [32] Zhang, H., Xu, D., Zhang, X., Chen, Q., Xie, H., & Li, S. (2015). Model-based angular scan error correction of an electrothermally-actuated MEMS mirror. Sensors, 15(12), 30991-31004. [33] Zhang, X., Zhou, L., & Xie, H. (2015). A fast, large-stroke electrothermal MEMS mirror based on Cu/W bimorph. Micromachines, 6(12), 1876-1889. [34] Thangavel, A., Rengaswamy, R., Sukumar, P. K., & Sekar, R. (2018). Modelling of Chevron electrothermal actuator and its performance analysis. Microsystem Technologies, 24(4), 1767-1774. [35] Wang, Z., Shen, X., & Chen, X. (2015). Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsystem Technologies, 21(11), 2307-2314. [36] Han, F., Wang, W., Zhang, X., & Xie, H. (2016). Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers. Journal of Microelectromechanical Systems, 25(4), 750-760.
| ||
آمار تعداد مشاهده مقاله: 16,764 تعداد دریافت فایل اصل مقاله: 279 |