تعداد نشریات | 38 |
تعداد شمارهها | 1,244 |
تعداد مقالات | 9,010 |
تعداد مشاهده مقاله | 7,872,293 |
تعداد دریافت فایل اصل مقاله | 4,722,224 |
روششناسی و مدل عملیاتی مبتنی بر فناوری زیستی در مهار خوردگی شناورها و سازههای دریایی | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
مقاله 5، دوره 19، شماره 57، بهمن 1399، صفحه 42-49 اصل مقاله (427.17 K) | ||
نوع مقاله: مقاله مروری | ||
نویسنده | ||
علیرضا حبیبی* | ||
گروه علوم پایه، دانشکده علوم، دانشگاه افسری و تربیت پاسداری امام حسین (ع)، زیباکنار، رشت، ایران | ||
تاریخ دریافت: 19 بهمن 1399، تاریخ بازنگری: 03 اردیبهشت 1400، تاریخ پذیرش: 03 اردیبهشت 1400 | ||
چکیده | ||
خوردگی در محیط آب از سه منظر خوردگی فیزیکی، شیمایی و بیولوژیکی قابل بررسی است. حدود 45 درصد خوردگیها توسط میکروارگانیسمهای زنده، جلبکها، لارو بارناکلها و سایر آبزیان زنده اتفاق میافتد. بیوفولینگ یا انباشت رسوبات زیستی با تشکیل یک لایه چسبنده بر روی شناورها و سازههای دریایی به نام بیوفیلم آغاز میشود. مشکلات اقتصادی، اجتماعی و بهداشتی از مهمترین اثرات نامطلوب خوردگی است. در این مقاله مروری با استفاده از کلمات کلیدی مرتبط، از پایگاههای علمی معتبر مانند Science Direct، Springer و Google Scholar با قالب "Narrative Review article(s) " ،" Review of the literature وarticle(s)" review" " جستجو انجام شده و مطالب مورد بررسی قرار گرفته است. برای مهار خوردگی روشهای مختلف شیمیایی و فیزیکی مورد بررسی قرار گرفته است؛ اما از منظر زیستی توجه چندانی به آن نشده است. از مهمترین روشهای مهار خوردگی زیستی میتوان استفاده از باکتریهای احیاکننده نیترات، تکنیک فاژنمایی، استفاده از باکتریوفاژ و نیز استفاده از برخی میکرورگانیسمها اشاره نمود. در این تحقیق با استفاده از تکنیکهای تخصصی و به کمک علوم شیمی، مهندسی ژنتیک، سلولی مولکولی و بیوتکنولوژی نقشه راه کنترل بیوفولینگ که منجر به مهار خوردگی میشود، پیشنهاد شده است. در صورت انجام عملی این تحقیق، با هزینهای بسیار کمتر از روشهای سنتی، خوردگی کنترل خواهد شد. | ||
کلیدواژهها | ||
بیوفولینگ؛ بیوفیلم؛ خوردگی؛ کنترل خوردگی و آنتی بیوفولینگ | ||
عنوان مقاله [English] | ||
Methodology and operational model based on biotechnology in corrosion control of vessels and offshore structures | ||
نویسندگان [English] | ||
Alireza Habibi | ||
1. Department of Basic Sciences, Faculty of Sciences, Imam Hossein (AS) Officers and Guard Training University, Zibaknar, Rasht, Iran | ||
چکیده [English] | ||
Corrosion in the water environment can be examined from three perspectives, Physical, chemical and biological corrosion. 45% of corrosion occurs by living microorganisms, algae, barnacles’ larvae and other live aquatic animals. Biofouling or accumulation of biological sediments, begins by forming a sticky layer on vessels and offshore structures called biofilms. Economic, social and health problems are the most important adverse effects of corrosion. In this review, using related keywords from scientific databases such as Science Direct, Springer and Google Scholar in the style of "Narrative Review article (s)", "Review of the literature and article (s)" review” the search was done and the content is reviewed. Different chemical and physical methods have been investigated to prevent corrosion. However, based on biological perspective, little attention has been paid to it. The most important methods of bio-corrosion inhibition are nitrate-reducing bacteria, phage display technique, use of bacteriophage and some microorganisms. In this study, using specialized techniques via chemistry, genetic engineering, molecular cellular and biotechnology, biofouling control roadmap that leads to corrosion inhibition has been proposed. By doing this research practically, the corrosion will be controlled at a much lower cost than traditional methods. | ||
کلیدواژهها [English] | ||
Biofouling, biofilm, corrosion, corrosion control and anti-biofouling | ||
مراجع | ||
[1] Salta M, Wharton JA, Blache Y, Stokes KR, and B. J‐F, "Marine biofilms on artificial surfaces: structure and dynamics," Environmental microbiology, vol. 15, pp. 2879-2893, 2013.
[2] Nguyen T, Roddick F, and F. L, "Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures," Membranes, vol. 2, pp. 804-840, 2012.
[3] Li Y and N. C, "Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling," Bioactive materials, vol. 4, pp. 189-195, 2019.
[4] Nandakumar k and Y. T, "Biofouling and its prevention: A comprehensive overview," Biocontrol science, vol. 8, pp. 133-144, 2003.
[5] Zarasvand KA and R. VR, "Microorganisms: induction and inhibition of corrosion in metals," International Biodeterioration & Biodegradation, vol. 87, pp. 66-74, 2014.
[6] Marcus P, Corrosion mechanisms in theory and practice: CRC press, 2011.
[7] Grigoryan AA, S. Cornish, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al., "Competitive oxidation of volatile fatty acids by sulfate-and nitrate-reducing bacteria from an oil field in Argentina," Appl. Environ. Microbiol., vol. 74, pp. 4324-4335, 2008.
[8] Shaw BA and K. RG, "What is corrosion?," Interface-Electrochemical Society, vol. 15, pp. 24-27, 2006.
[9] Raja PB, Ismail M, Ghoreishiamiri S, Mirza J, Ismail MC, Kakooei S, et al., "Reviews on corrosion inhibitors: a short view," Chemical Engineering Communications, vol. 203, pp. 1145-1156, 2016.
[10] R. K. Darsanaki and A. Habibi, "Role of microorganisms in corrosion inhibition of metals."
[11] Detty MR, Ciriminna R, Bright FV, and P. M, "Environmentally benign sol–gel antifouling and foul-releasing coatings," Accounts of chemical research, vol. 47, pp. 678-687, 2014.
[12] Holmström C, Egan S, Franks A, McCloy S, and Kjelleberg S, "Antifouling activities expressed by marine surface associated Pseudoalteromonas species," FEMS microbiology ecology, vol. 41, pp. 47-58, 2002.
[13] Atalah J, Bennett H, Hopkins GA, and F. BM, "Evaluation of the sea anemone Anthothoe albocincta as an augmentative biocontrol agent for biofouling on artificial structures," Biofouling, vol. 29, pp. 559-571, 2013.
[14] Müller WEG, Wang X, Proksch P, Perry CC, Osinga R, Gardères J, et al., "Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?," Marine biotechnology, vol. 15, pp. 375-398, 2013.
[15] Arap MA, "Phage display technology: applications and innovations," Genetics and Molecular Biology, vol. 28, pp. 1-9, 2005.
[16] Bai XQ, Xie GT, Fan Hui, Peng ZX, Yuan CQ, and Y. XP, "Study on biomimetic preparation of shell surface microstructure for ship antifouling," Wear, vol. 306, pp. 285-295, 2013.
[17] Thiyagarajan S, Bavya M, and J. A, "Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria," Journal of environmental biology, vol. 37, p. 895, 2016.
[18] Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’gara F, et al., "Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism," Marine drugs, vol. 8, pp. 608-628, 2010.
[19] Ortiz‐Estrada ÁM, Gollas‐Galván T, Martínez‐Córdova LR, and M. P. M, "Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems," Reviews in Aquaculture, vol. 11, pp. 234-245, 2019.
[20] Comeau AM, Douglas GM, and L. MGI, "Microbiome helper: a custom and streamlined workflow for microbiome research," MSystems, vol. 2, pp. e00127-16, 2017.
[21] Wang Kg, Wu ZH, Wang Y, Wang CY, and X. Ying, "Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs," Marine drugs, vol. 15, p. 266, 2017.
[22] Xin X, Huang G, Zhou X, Sun W, Jin C, Jiang W, et al., "Potential antifouling compounds with antidiatom adhesion activities from the sponge-associated bacteria, Bacillus pumilus," Journal of adhesion science and Technology, vol. 31, pp. 1028-1043, 2017.
[23] Viju N, Satheesh S, and P. SM, "Antifouling activities of antagonistic marine bacterium Pseudomonas putida Associated with an Octopus," Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, vol. 87, pp. 1113-1124, 2017.
[24] Spanò A, Laganà P, Visalli G, Maugeri TL, and G. C, "In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14," Current microbiology, vol. 72, pp. 518-528, 2016.
[25] Ramasubburayan R, Prakash S, Iyapparaj P, Sumathi S, Titus S, Immanuel G, et al., "Isolation, screening and evaluation of antifouling activity of mangrove associated bacterium, Bacillus subtilis subsp. subtilis RG," Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, vol. 87, pp. 1015-1024, 2017.
[26] Supardy NA, Ibrahim D, N. SRM, and N. WNMd, "Bioactive Compounds of Pseudoalteromonas sp. IBRL PD4. 8 Inhibit Growth of Fouling Bacteria and Attenuate Biofilms of Vibrio alginolyticus FB3," Polish journal of microbiology, vol. 68, pp. 21-33, 2019.
[27] Reece RJ, Analysis of genes and genomes: John Wiley & Sons Hoboken, NJ, 2004.
[28] Satheesh S, Soniamby AR, Shankar CVS, and P. SMJ, "Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.)," Journal of Ocean University of China, vol. 11, pp. 354-360, 2012.
[29] Hamayeli H, Hassanshahian M, and H. MA, "The antibacterial and antibiofilm activity of sea anemone (Stichodactyla haddoni) against antibiotic-resistant bacteria and characterization of bioactive metabolites," International Aquatic Research, vol. 11, pp. 85-97, 2019.
[30] Gatenholm P, Holmström C, Maki JS, and K. S, "Toward biological antifouling surface coatings: marine bacteria immobilized in hydrogel inhibit barnacle larvae," Biofouling, vol. 8, pp. 293-301, 1995. | ||
آمار تعداد مشاهده مقاله: 16,717 تعداد دریافت فایل اصل مقاله: 148 |