تعداد نشریات | 36 |
تعداد شمارهها | 1,215 |
تعداد مقالات | 8,803 |
تعداد مشاهده مقاله | 7,394,388 |
تعداد دریافت فایل اصل مقاله | 4,332,683 |
بهینهسازی شکل دماغه نفوذگر در هدف بتنی تراکمپذیر و با هدف دستیابی به بیشترین عمق نفوذ | ||
مکانیک هوافضا | ||
مقاله 7، دوره 17، شماره 2 - شماره پیاپی 64، مرداد 1400، صفحه 101-115 اصل مقاله (876.89 K) | ||
نوع مقاله: مکانیک جامدات | ||
نویسندگان | ||
ابوذر ملکیان* 1؛ خداداد واحدی2؛ روح اله حسینی3؛ علیرضا نداف اسکوئی4 | ||
1دانشکده مکانیک دانشگاه امام حسین علیه السلام | ||
2دانشگاه مکانیک دانشگاه امام حسین (ع) | ||
3محل تحصیل: دانشکده مهندسی مکانیک دانشگاه تهران محل کار: دانشگاه جامع امام حسین (ع) | ||
4هیات علمی دانشگاه امام حسین | ||
تاریخ دریافت: 05 مهر 1399، تاریخ بازنگری: 10 آذر 1399، تاریخ پذیرش: 17 مرداد 1400 | ||
چکیده | ||
در این پژوهش بهینهسازی شکل دماغه نفوذگر جنبشی، با هدف دستیابی به نفوذ حداکثری انجام شده است. جهت بهینهسازی از روش بهینهسازی تحلیلی لاگرانژ و از الگوریتم تکاملی ژنتیک، چندین نوع تابع مولد دماغه مختلف، دو تابع هدف مختلف ضریب شکل و عمق نفوذ، استفاده شده است. با مقایسه شکل و عمق نفوذ دماغههای بهینهسازی شده، مشاهده میشود که توافق خوبی میان نتایج حاصل از بهینهسازی در حالات مختلف وجود دارد. در بهینهسازی به روش تحلیلی، تابع هدف بهینهسازی ضریب شکل دماغه میباشد و از روش بهینهسازی لاگرانژ استفاده شده است. در بهینهسازی عددی، از دو تابع هدف مختلف عمق نفوذ و ضریب شکل دماغه و همچنین سه نوع تابع مولد دماغه جهت بهینهسازی استفاده شده است. نزدیک بودن نتایج بهینهسازی در همه روشهای ذکر شده نشان از دقت بالای بهینهسازیهای انجام شده دارد. در این مقاله نشان دادهشده است که، ضریب شکل دماغه، تابع هدفی مناسب، برای بهینهسازی دماغه نفوذگرهای جنبشی با هدف دستیابی به بیشترین عمق نفوذ میباشد. یکی از مشخصههایی که در بهینهسازی شکل دماغه میبایست در نظر گرفته شود، نسبت شعاع ساقه به طول دماغه (τ) میباشد. در این مطالعه، نسبت (τ) در بهینهسازی به روشهای مختلف، برابر با 3/0 در نظر گرفته شدهاست. پس از بهینهسازی و بدست آمدن شکل دماغه پرتابه، عمق نفوذ پرتابه در سرعتهای مختلف محاسبه و با عمق نفوذ دماغههای اجایو با نسبت (τ) برابر با 3/0 مقایسه شده است. مشاهده میشود که عمق نفوذ دماغههای بهینهسازیشده، به میزان قابل توجهی از عمق نفوذ دماغه اجایو در سرعتهای مختلف برخورد، بیشتر میباشد. | ||
کلیدواژهها | ||
بهینهسازی دماغهی نفوذگر؛ نفوذ حداکثری پرتابه؛ شکل بهینهی دماغهی نفوذگر؛ طراحی دماغهی نفوذگر؛ بتن تراکم پذیر | ||
عنوان مقاله [English] | ||
Optimizing the shape of the penetrator nose into Compressible Concrete in order to achieve the maximum penetration depth | ||
نویسندگان [English] | ||
khodadad vahedi2؛ Rohollah Hosseini3؛ Alireza Naddaf Oskouei4؛ | ||
2Mechanical Engineering Department Imam Hossein University | ||
3Mechanical Engineering Department Imam Hossein University | ||
4Mechanical Engineering Department Imam Hossein University | ||
چکیده [English] | ||
In this study, the shape of the kinetic penetrator nose is optimized with the aim of achieving maximum penetration. For optimization, Lagrange analytical optimization method and genetic evolutionary algorithm, several types of different nose-generating functions, two different objective functions, and shape coefficient and penetration depth have been used. Comparing the shape and depth of penetration of the optimized noses, it is observed that there is a good agreement between the results of the optimization in different cases. In analytical optimization, the objective function is to optimize the shape of the nose and the Lagrange optimization method is used. In numerical optimization, two different objective functions of penetration depth and nose shape coefficient as well as three types of nose generating functions have been used for optimization. The proximity of the optimization results in all the mentioned methods shows the high accuracy of the optimizations performed. In this paper, it is shown that the nose shape coefficient is a suitable objective function to optimize the nose of kinetic penetrators in order to achieve the maximum penetration depth. One of the characteristics that should be considered in optimizing the shape of the nose is the ratio of the stem radius to the length of the nose (τ). In this study, the ratio (τ) in optimization by different methods is equal to 0.3. After optimizing and obtaining the shape of the projectile nose, the penetration depth of the projectile at different speeds was calculated and compared with the penetration depth of the oyster noses with a ratio (τ) equal to 0.3. It can be seen that the penetration depth of the optimized noses is significantly greater than the penetration depth of the ips in different collision velocities. | ||
کلیدواژهها [English] | ||
Penetration nose optimization, Maximum projectile penetration, optimal penetrator nose shape, Penetrator nose design, Compressible Concrete | ||
مراجع | ||
1. Jones S. E., Rule W. K., Jerome D. M., and Klug R. T., On the optimal nose geometry for a rigid penetrator, pp. 413-417, 1998.## 2. Li Q. M. and X. W. Chen, "Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile," International Journal of Impact Engineering, Vol. 28, No. 1, pp. 93-116, 2003/01/01/ 2003.## 3. Forrestal M. J., Altman B. S., Cargile J. D., and Hanchak S. J., "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets," International Journal of Impact Engineering, Vol. 15, No. 4, pp. 395-405, 1994/08/01.## 4. Ben-Dor G., Applied High-Speed Plate Penetration Dynamics. 2006.## 5. Jones S. E. and Rule W. K., "On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction," International Journal of Impact Engineering - Int J Impact Eng., Vol. 24, pp. 403-415, 04/01 2000.## 6. Yankelevsky D. Z. and Gluck J., "Nose shape effect on high velocity soil penetration," International Journal of Mechanical Sciences, Vol. 22, No. 5, pp. 297-311, 1980/01/01.## 7. Dubinsky A. and Elperin T., "Modeling of High-Speed Penetration Into Concrete Shields and Shape Optimization of Impactors AU - Ben-Dor, G," Mechanics Based Design of Structures and Machines, Vol. 34, No. 2, pp. 139-156, 2006/07/01.## 8. Forrestal M. J. and Tzou D. Y., "A spherical cavity-expansion penetration model for concrete targets," International Journal of Solids and Structures, Vol. 34, No. 31, pp. 4127-41.## 9. Ben-Dor G., Dubinsky A., and Elperin T., "Shape optimization of high-speed penetrators: a review," Central European Journal of Engineering, Vol. 2, No. 4, pp. 473-482, 2012/12/01.## 10. Ben-Dor G., Dubinsky A., and Elperin T.," Shape optimization of penetrator nose," Theoretical and Applied Fracture Mechanics, Vol. 35, No. 3, pp. 261-270, 2001/05/01/ 2001.## 11. Yu Shan H. W., Fenglei Huang, and Jinzhu Li, "On the Inertia Term of Projectile’s Penetration Resistance," 2013.## 12. Liu J., Pi A., and Huang F., "Penetration performance of double-ogive-nose projectiles," International Journal of Impact Engineering, Article Vol. 84, pp. 13-23, 2015.## 13. Chen X. W. and Li Q. M., "Deep penetration of a non-deformable projectile with different geometrical characteristics," International Journal of Impact Engineering, Vol. 27, No. 6, pp. 619-637, 2002/07/01.## 14. Dong H., Liu Z., Wu H., Gao X., Pi A., and Huang F., "Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete," International Journal of Impact Engineering, Vol. 132, p. 103311, 2019/10/01.## 15. Fan R. and Li Q. M., "Penetration resistance and the critical cavitation velocity for an ogive-nosed rigid projectile penetrating into a semi-infinite metallic target," International Journal of Impact Engineering, Vol. 134, p. 103391, 2019/12/01.## 16. Rubin M. B. and Yarin A. L., "A generalized formula for the penetration depth of a deformable projectile," International Journal of Impact Engineering, Vol. 27, No. 4, pp. 387-398, 2002/04/01.## 17. Shi C., Wang M., Li J., and Li M., "A model of depth calculation for projectile penetration into dry sand and comparison with experiments," International Journal of Impact Engineering, Vol. 73, pp. 112-122, 2014/11/01.## 18. Kong X. Z., Wu H., Fang Q., and Peng Y., "Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model," International Journal of Impact Engineering, Vol. 100, No. Supplement C, pp. 13-22, 2017/02/01.## 19. Forrestal M. J., Frew D. J., Hickerson J. P., and Rohwer T. A., "Penetration of concrete targets with deceleration-time measurements," International Journal of Impact Engineering, Vol. 28, No. 5, pp. 479-497, 2003/05/01.## 20. Chian S. C., Tan B. C. V., and Sarma A., "Reprint of: Projectile penetration into sand: Relative density of sand and projectile nose shape and mass," International Journal of Impact Engineering, Vol. 105, pp. 88-0.## 21. Chen X.-w. and Li J.-c., "Analysis on the resistive force in penetration of a rigid projectile," Defence Technology, Vol. 10, No. 3, pp. 285-293, 2014/09/01.## 22. Neely-Horton R. N. D. S. E. J. A. M., "Design of hard-target penetrator nose geometry in the presence of high-speed, velocity-dependent friction, including the effects of mass loss and blunting," 2004.## 23. Wen H. M., Yang Y., and He T., "Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets," Latin American Journal of Solids and Structures, Vol. 7, pp. 413-422, 2010.## 24. Silling S. A. and Forrestal M. J., "Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets," International Journal of Impact Engineering, Vol. 34, No. 11, pp. 1814-1820, 2007/11/01.## 25. Chen X., He L., and Yang S., "Modeling on mass abrasion of kinetic energy penetrator," European Journal of Mechanics A-solids- Eur J Mech A-Solid, Vol. 29, pp. 7-17, 02/28 2010.## 26. Mu Z. and Zhang W., "An investigation on mass loss of ogival projectiles penetrating concrete targets," International Journal of Impact Engineering, Vol. 38, No. 8, pp. 770-778, 2011/08/01.## 27. Kong X. Z., Wu H., Fang Q., Zhang W., and Xiao Y. K." ,Projectile penetration into mortar targets with a broad range of striking velocities: Test and analyses," International Journal of Impact Engineering, Vol. 106, pp. 18-29, 2017/08/01.## 28. Forrestal M. J. and Piekutowski A. J., "Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0km/s," International Journal of Impact Engineering, Vol. 24, No. 1, pp. 57-67, 2000/01/01.## 29. Vahedi K., Latifi M., and Khosravi F., Investigation and Analysis of ogive-shape nose steel projectile into concrete target," Turkish Journal of Engineering and Environmental Sciences, Vol. 32, No. 5, pp. 295-302, 2009.## 30. Ölçmen S., Jones S. E., and Weiner R. H., A numerical analysis of projectile nose geometry including sliding friction for penetration into geological targets. 2016.## 31. Liyaghat. G., and Pol, M. H. “Analysis of the penetration of inclined projectiles in thin metal plates”, J Aerospace Mechanics, Vol. 5, No. 2, 2009. (In Persian)## 32. Vahedi. K., and Moshtaghian M., “Investigation and analysis of projectile penetration in a ceramic / composite target”, J Aerospace Mechanics, Vol. 6, No. 4, 2011. (In Persian)## 33. Vahedi K. and Ghaseminia A., “Analysis and comparison of rod projectile penetration models in semi-infinite targets”, J Aerospace Mechanics, Vol. 1, No. 3, 2005. (In Persian)## 34. Frew D. J., Forrestal M. J., and Cargile J. D., "The effect of concrete target diameter on projectile deceleration and penetration depth," International Journal of Impact Engineering, Vol. 32, No. 10, pp. 1584-1594, 2006/10/01.## | ||
آمار تعداد مشاهده مقاله: 264 تعداد دریافت فایل اصل مقاله: 442 |