تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,148 |
تعداد دریافت فایل اصل مقاله | 4,706,730 |
شبیه سازی و اعتبارسنجی تست های مانور استاندارد مدل کانتینربر KCS به روش دینامیک سیالات محاسباتی | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
مقاله 8، دوره 20، شماره 58، شهریور 1400، صفحه 74-87 اصل مقاله (1000.02 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سعید کرمی* 1؛ روح الله هادیپور گودرزی2؛ عسگری براریان1 | ||
1کارشناس دفتر طراحی شناورهای سطحی/پژوهشکده علوم وفناوری دفاعی شمال/دانشگاه صنعتی مالک اشتر | ||
2دانشگاه صنعتی مالک اشتر | ||
تاریخ دریافت: 01 شهریور 1400، تاریخ بازنگری: 01 مهر 1400، تاریخ پذیرش: 01 آذر 1400 | ||
چکیده | ||
امروزه حمل و نقل دریایی در حال افزایش و احتمال تصادم شناورها در مناطق پر تراکم افزایش یافته است. در این راستا بهبود عملکرد مانور شناور بطور مستقیم روی اقتصاد و امنیت ناوبری اثر میگذارد. بنابراین مطالعه پارامترهای مانور، موضوعی الزامی در فرآیند طراحی کشتی است. در این مطالعه معتبرسازی نتایج بواسطه عدم قطعیت و تایید برای شناور مرجع KCS انجام شده است. شناور مرجع در عدد فرود 201/0 در حالت سهدرجه آزادی شامل : سرج، هیو و پیچ و شرایط آب آرام مورد بررسی قرار گرفت. سپس به روش دینامیک سیالات محاسباتی نتایج مورد مقایسه قرار گرفت. تایید و اعتباربخشی طبق توصیه نامه ITTC بوسیله سه سطح شبکهبندی انجام و مقدار عدم قطعیت عددی نیز تخمین زده شد. مقدار عدم قطعیت کمتر از 12 درصد و خطای عددی نسبت به تجربی نیز کمتر از 6 درصد استخراج گردید. تطابق مناسبی بین نتایج عددی و آزمایشگاهی ارائه شد. به منظور مدلسازی جریان حول بدنه از مدل دو فازی VOF و مدل آشفتگی DES بهره گرفته شد. اثر پروانه به روش دیسک محرک و طی یک روند نمای در پاشنه شناور وارد گردید. | ||
کلیدواژهها | ||
روش حجم محدود؛ دینامیک سیالات محاسباتی؛ مدل حرکت صفحهای؛ اسوی و یاو خالص؛ استاندارد IMO | ||
عنوان مقاله [English] | ||
Simulation and validation of standard maneuver tests of KCS container model by computational fluid dynamics method | ||
نویسندگان [English] | ||
saeed karami1؛ Rouhollah hadipour2؛ Asgari Bararian1 | ||
1Expert on Surface Vessel Design / Northwestern Institute of Science and Technology / Malek Ashtar University of Technology | ||
2Malek Ashtar university of technology | ||
چکیده [English] | ||
Nowadays, maritime transport is increasing significantly, and the probability of collisions between ships in densely populated region has increased. In this regard, improving the ship maneuvering performance has a significant impact directly on the economy and safety of navigation. Therefore, the study of maneuver parameters is considered as a mandatory issue in the process of designing a ship. In this study, first the validation of the results has been done for the KCS. The benchmark ship at froud number 0.201 was simulated in three degrees of freedom including: surge, heave and pitch and calm water conditions, then the results were compared by computational fluid dynamics. Validation was performed according to the ITTC Recommendation by three levels of gridding, and the value of numerical uncertainty was also estimated. Uncertainty less than 12% and numerical error respect to experimental less than 6% were extracted. A good match was presented between the numerical and laboratory results. A good match was presented between the numerical and laboratory results. The two-phase flow the Volume Of Fluid (VOF) method and the DES turbulence model were used to model the flow around the hull. The effect of propeller was induced by actuator disk method and based on flowchart in ship stern. | ||
کلیدواژهها [English] | ||
Finite volume method, Computational fluid dynamics, Planer motion mechanism, Yaw and sway pure, IMO Standard | ||
مراجع | ||
[1] A. B. o. Shipping, "Guide for Vessle Maneuverability," ed. Houston, 2017, p. 111. [2] M. A. Abkowitz, "Lectures on ship hydrodynamics--Steering and manoeuvrability," 1964. [3] M. Gertler and G. R. Hagen, "Standard equations of motion for submarine simulation," David w Taylor Naval Ship Research and Development Center Bethesda MD1967. [4] J. Feldman, "DTNSRDC revised standard submarine equations of motion," DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP …1979. [5] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control: John Wiley & Sons, 2011. [6] A. Ogawa and H. Kasai, "On the mathematical model of maneuvering motion of ship," International Shipbuilding Progress, vol. 25, pp. 306-3019, 1978 1980. [7] H. Yasukawa and Y. Yoshimura, "Introduction of MMG standard method for ship maneuvering predictions," Journal of Marine Science and Technology, vol. 20, pp. 37-52, 2015. [8] S. Abdel-Latif, M. Abdel-Geliel, and E. E. Zakzouk, "Simulation of ship maneuvering behavior based on the modular mathematical model," in International Conference on Aerospace Sciences and Aviation Technology, 2013, pp. 1-14. [9] M. Araki, H. Sadat-Hosseini, Y. Sanada, N. Umeda, and F. Stern, "Improved Maneuvering-Based Mathematical Model for Free-Running Ship Motions in Following Waves Using High-Fidelity CFD Results and System-Identification Technique," in Contemporary Ideas on Ship Stability, ed: Springer, 2019, pp. 91-115. [10] A. Balagopalan, K. Tiwari, T. Rameesha, and P. Krishnankutty, "Manoeuvring prediction of a container ship using the numerical PMM test and experimental validation using the free running model test," Ships and Offshore Structures, vol. 15, pp. 852-865, 2020. [11] A. Hajivand and S. H. Mousavizadegan, "Virtual simulation of maneuvering captive tests for a surface vessel," International journal of naval architecture and ocean engineering, vol. 7, pp. 848-872, 2015. [12] Y. Jin, A. R. Magee, L. J. Yiew, and Y. Zheng, "Dynamic manoeuvres of KCS in waves using URANS computations with overset grids," in Journal of Physics: Conference Series, 2019, p. 012015. [13] J. Li, J. E. Martin, and P. M. Carrica, "Large-scale simulation of ship bubbly wake during a maneuver in stratified flow," Ocean Engineering, vol. 173, pp. 643-658, 2019. [14] A. H. Muhammad, M. A. Djabbar, and N. Yuniarsih, "Maneuvering performance of a ferry affected by rudder area and speed," The Indonesian Journal of Naval Architecture, vol. 1, 2013. [15] C. M. NOOR, K. SAMO, and W. W. NIK, "Ship manoeuvring assessment by using numerical simulation approach," 2012. [16] R. Rajita Shenoi, P. Krishnankutty, and R. Panneer Selvam, "Study of maneuverability of container ship with nonlinear and roll-coupled effects by numerical simulations using RANSE-based solver," Journal of Offshore Mechanics and Arctic Engineering, vol. 138, 2016. [17] G. Taimuri, J. Matusiak, T. Mikkola, P. Kujala, and S. Hirdaris, "A 6-DoF maneuvering model for the rapid estimation of hydrodynamic actions in deep and shallow waters," Ocean Engineering, vol. 218, p. 108103, 2020. [18] O. F. Sukas, O. K. Kinaci, and S. Bal, "Theorecticl background and application of MANSIM for ship maneuvering simulations," Ocean engineering, vol. 192, 2019. [19] H. Kim, H. Akimoto, and H. Islam, "Estimation of the hydrodynamic derivatives by RaNS simulation of planar motion mechanism test," Ocean engineering, vol. 108, pp. 129-139, 2015. [20] O. F. Sukas, O. K. Kinaci, and S. Bal, "System-based prediction of maneuvering performance of twin-propeller and twin-rudder ship using a modular mathematical model," Applied Ocean Research, vol. 84, pp. 145-162, 2019. [21] ع. آرانی و میراعلم, "بررسی عددی تأثیر دامنه و بسامد نوسان یک AUV روی مشتقات هیدرودینامیکی در حرکت خالص هیو," نشریه علمی-پژوهشی هیدروفیزیک, vol. 5. [22] عباسی, ثاراله, زینعلی, مرحمت, ولدی, "آنالیز حساسیت مانور پذیری یک وسیله زیرسطحی خودکنترل نسبت به تغییرات ضرایب جرم مجازی," مکانیک سازه ها و شاره ها, vol. 9, pp. 1-13, 2019. [23] ح. فرد, مسعود, ر. ورنوسفادرانی, محمود, "محاسبه عددی و تحلیلی گشتاور مانک در جریان لزج برای یک زیردریایی هوشمند در وضعیت سووی خالص درآزمایش PMM," مکانیک سازه ها و شاره ها, vol. 9, pp. 205-216, 2019. [24] ا. فروشانی, گ. کار, and محمد, "استخراج ضرایب هیدرودینامیک با استفاده از مانور مکانیزم حرکت صفحه ای به کمک دینامیک سیالات محاسباتی," مکانیک سازه ها و شاره ها, vol. 8, pp. 215-228, 2018. [25] Y. Liu, L. Zou, Z. Zou, and H. Guo, "Predictions of ship maneuverability based on virtual captive model tests," Engineering Applications of Computational Fluid Mechanics, vol. 12, pp. 334-353, 2018 2014. [26] A. C. Hochbaum, "Manoeuvring Committee Report & Recommendations," in 25th International Towing Tank Conference. Fukuoka, Japan, ed, 2008, pp. 14-20. [27] ITTC, "Recommended Procedures and Guidlines Practical guidelines for ship CFD applications," in 26th International Towing Tank Conference, ed, 2014
[28] I. STAR-CCM+, STAR-CCM+ Documentation, 2017. [29] S. S. Cook, "Effects of headwinds on towing tank resistance and PMM tests for ONR Tumblehome," 2011. [30] P. Spalart and S. Allmaras, "A one-equation turbulence model for aerodynamic flows," in 30th aerospace sciences meeting and exhibit, 1992, p. 439. [31] M. Shur, P. Spalart, M. Strelets, and A. Travin, "Detached-eddy simulation of an airfoil at high angle of attack," in Engineering turbulence modelling and experiments 4, ed: Elsevier, 1999, pp. 669-678. [32] F. Menter and M. Kuntz, "Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles," in The aerodynamics of heavy vehicles: trucks, buses, and trains, ed: Springer, 2004, pp. 339-352. [33] P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, "A new version of detached-eddy simulation, resistant to ambiguous grid densities," Theoretical and computational fluid dynamics, vol. 20, p. 181, 2006. [34] T. Tezdogan, Y. K. Demirel, P. Kellett, M. Khorasanchi, and O. Turan, "Full-Scale unsteady RANS CFD Simulations of ship behaviour and Performance in head sea due to Slow Steaming," Ocean Engineering, vol. 97, pp. 186-206, 2015. [35] V. Bertram, Practical Ship Hydrodynamics: Elsevier, 2012. [36] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method: Pearson Education, 2007. [37] A. I. o. Aeronautics and Astronautics, AIAA guide for the verification and validation of computational fluid dynamics simulations: American Institute of aeronautics and astronautics, 1998. [38] H.-c. SHEN, Z.-q. YAO, B.-s. WU, N. ZHANG, and R.-y. J. J. o. S. M. YANG, "A new method on uncertainty analysis and assessment in ship CFD [J]," vol. 14, pp. 1071-1083, 2010. [39] C. D. Simonsen, F. J. C. Stern, and fluids, "Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments," vol. 32, pp. 1325-1356, 2003. [40] S. Karami and R. H Goudarzi, "Verification and Validation Study of Computational Fluid Dynamics for KCS Container Ship Resistance Result Using Shear Stress Transport Turbulence Model," 2020. [41] R. P. ITTC and R. J. I. R. Procedures, "Guidelines: Practical Guidelines for Ship CFD Applications," vol. 7, pp. 02-03, 2011. [42] I. Q. Manual, "Uncertainty analysis in CFD uncertainty assessment methodology. The 22nd ITTC, Seoul and Shanghai," Report1999. [43] I. R. Procedures, "ITTC–Recommended Procedures-Performance, Propulsion 1978 ITTC Performance Prediction Method," in International Towing Tank Conference, 1999, pp. 7.5-02. [44] I. R. Procedures, "Uncertainty analysis in CFD, uncertainty assessment methodology and Procedures. ITTC-Quality Manual," in In Proceedings of the International Towing Tank Conference, Venice, Italy, 8–14 September 2002., 2002, pp. 7.5-02. [45] I. R. Procedures, "Uncertainty Analysis in CFD, Verification and Validation Methodology and Procedures. ITTC-Recommended Procedures and Guidelines, 7.5-03-01-01," in In Proceedings of the International Towing Tank Conference, Wuxi, China, 18 September 2017, 2017, pp. 7.5-02. [46] Yi. Liu, Lu. Zou, Zaojian. Zou, Haipeng. Guo, "Predictions of ship maneuverability based on virtual captive model tests" in Engineering Applications of Computational Fluid Mechanics, Taylor & Francis 2018, pp. 334-353. | ||
آمار تعداد مشاهده مقاله: 4,825 تعداد دریافت فایل اصل مقاله: 115 |