تعداد نشریات | 36 |
تعداد شمارهها | 1,237 |
تعداد مقالات | 8,955 |
تعداد مشاهده مقاله | 7,809,630 |
تعداد دریافت فایل اصل مقاله | 4,677,311 |
زنجیره تأمین لجن فاضلاب با رابطه متقابل آب و انرژی تحت شرایط اختلال : یک مدل استوار سناریو محور | ||
مدیریت زنجیره تأمین | ||
مقاله 5، دوره 23، شماره 72، آذر 1400، صفحه 55-70 اصل مقاله (1.21 M) | ||
نوع مقاله: پژوهشی | ||
نویسندگان | ||
هانی گیلانی* 1؛ هادی صاحبی2 | ||
1گروه مهندسی صنایع ، دانشکده مهندسی صنایع ، دانشگاه علم و صنعت، تهران ، ایران | ||
2استادیار، گروه مهندسی صنایع ، دانشکده مهندسی صنایع ، دانشگاه علم و صنعت، تهران ، ایران | ||
تاریخ دریافت: 02 مهر 1400، تاریخ بازنگری: 04 آبان 1400، تاریخ پذیرش: 28 دی 1400 | ||
چکیده | ||
در عصر حاضر کمبود انرژی و نیز کاهش ذخایر آب و خطر خشکسالی، به دو چالش جدی در سراسر جهان تبدیل شده است. هدف از این پژوهش مطالعه تأثیر رابطه متقابل آب و انرژی در سیاستگذاریهای کشوری و برنامهریزیهای هدفمند دولتی است. به همین منظور در این مطالعه یک مدل استوار چندهدفه برای طراحی شبکه زنجیره تأمین قابل اطمینان تولید انرژی زیستی از طریق فرآیند هضم مشترک بیهوازی لجن فاضلاب تحت اختلال جزئی بهدنبال وقوع خشکسالی ارائه شده است. تابع هدف اقتصادی به بیشینهسازی سود و تابع هدف زیست محیطی به بیشینهسازی بازدهی زیست محیطی فرآیند، میپردازد. بهمنظور بررسی همهجانبه کارایی مدل پیشنهاد شده، چند استان از مناطق خشک، نیمهخشک و مرطوب کشور بهعنوان مطالعه موردی در نظر گرفته شدهاند. نتایج بهکارگیری مدل پیشنهادی نشان میدهد احداث نیروگاه در دو استان اصفهان و گلستان امکانپذیر است. از طرف دیگر نشان داده شده است که رویکرد پیشنهادی نسبت به رویکردهای کلاسیک برنامهریزی غیرقطعی تابآوری بیشتری نسبت به تغییرات مؤلفههای غیرقطعی دارد. نتایج حاصل به مدیران کلان کشوری در استفاده بهتر از تمام منابع اولیه در مدیریت بهتر مشکلات ناشی از خشکسالی و اثرات ناگوار زیست محیطی صنایع پیشرفته کمک شایانی خواهد داشت. | ||
کلیدواژهها | ||
رابطه متقابل آب و انرژی؛ طراحی زنجیره تأمین انرژی زیستی؛ توسعه پایدار؛ زیست توده؛ بهینهسازی استوار | ||
عنوان مقاله [English] | ||
The Water-Energy Nexus of the Sewage Sludge Supply Chain Under Disruption : A Scenario-Based Robust Model | ||
نویسندگان [English] | ||
Hani Gilani1؛ hadi sahebi2 | ||
1School of Industrial Engineering, Iran University of Science & Technology, Tehran, | ||
2Assistant Professor School of Industrial Engineering, Iran University of Science & Technology, Tehran | ||
چکیده [English] | ||
Today, energy shortages and the decline in water supplies leading to the risk of drought, have become two major challenges worldwide. The purpose of this research is to study the impact of water-energy interactions on national policy making and objective-oriented government planning. For this purpose, a robust multi-objective model for reliable supply chain design of bioenergy production through joint anaerobic digestion of waste-water sludge under minor disturbances following drought has been presented. While the economic objective function examines the profit maximization, the environmental objective function examines the maximization of the environmental efficiency of the process. In order to fully evaluate the efficiency of the proposed model, several provinces of arid, semi-arid and humid regions of the country have been considered as case studies. The results show that it is possible to construct a power plant in the two provinces of Isfahan and Golestan. On the other, with regard to the changes in non-deterministic parameters, the proposed approach has a better resilience than the classical stochastic model. The results will help macroeconomic managers make better use of all primary resources to better manage the problems of drought and adverse environmental impacts of advanced industries. | ||
کلیدواژهها [English] | ||
Water-Energy NEXUS, Design of Bioenergy Supply Chain, Sustainability, Biomass, Robust Optimization | ||
مراجع | ||
[1] F. Amin Salehi and M. A. Abdoli, “The Necessity of Developing the Combined Heat and Power (CHP) Plants with Biogas Fuel in the Country,” vol. 12, no. 2, pp. 13-24, 2009.## [2] D. Yue, F. You, and S. W. Snyder, “Biomass-tobioenergy and biofuel supply chain optimization: Overview, key issues and challenges,” Computers and Chemical Engineering, vol. 66, pp. 36-56, 2014.## [3] R. Davis, A. Aden, and P. T. Pienkos, “Technoeconomic analysis of autotrophic microalgae for fuel production,” vol. 88, pp. 3524-3531, 2011.## [4] T. M. Mata, A. A. Martins, and N. S. Caetano, “Microalgae for biodiesel production and other applications: a review,” Renewable and sustainable energy reviews, vol. 14, no. 1, pp. 217-232, 2010.## [5] R. Wang and J. Zimmerman, “Water-energy nexus: A critical review paper,” ed: New Haven, CT: Yale School of Forestry and Environmental Studies, 2013.## [6] A. Maragkaki, M. Fountoulakis, A. Gypakis, [7] S. Gorjian and B. Ghobadian, “Solar desalination: A sustainable solution to water crisis in Iran,” vol. 48, pp. 571-584, 2015.## [8] s. babaeimorad, m. mohebbi, and h. bagheri, [9] S. K. Ghosh, “Biomass and bio-waste supply chain sustainability for bio-energy and bio-fuel production,” vol. 31, pp. 31-39, 2016.## [10] M. Marufuzzaman, X. Li, F. Yu, and F. Zhou, “Supply chain design and management for syngas production,” ACS Sustainable Chemistry and Engineering, vol. 4, no. 3, pp. 890-900, 2016.## [11] Ş. Y. Balaman and H. Selim, “A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, vol. 130, pp. 289-304, 2014.## [12] Ş. Y. Balaman and H. Selim, “A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains,” Energy, vol. 74, pp. 928-940, 2014.## [13] Ş. Y. Balaman and H. Selim, “Sustainable design of renewable energy supply chains integrated with district heating systems: A fuzzy optimization approach,” Journal of cleaner production, vol. 133, pp. 863-885, 2016.## [14] S. Torabi, J. Namdar, S. Hatefi, and F. Jolai, “An enhanced possibilistic programming approach for reliable closed-loop supply chain network design,” International Journal of Production Research, vol. 54, no. 5, pp. 1358-1387, 2016.## [15] A. Jabbarzadeh, B. Fahimnia, J.B. Sheu, and H. S. Moghadam, “Designing a supply chain resilient to major disruptions and supply/demand interruptions,” vol. 94, pp. 121-149, 2016.## [16] A. Osmaniand and J. Zhang, “Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment,” Applied energy, vol. 114, pp. 572-587, 2014.## [17] V. Gonela, J. Zhang, A. Osmani, and R. Onyeaghala, “Stochastic optimization of sustainable hybrid generation bioethanol supply chains,” Transportation research part e: Logistics and transportation review, vol. 77, pp. 1-28, 2015.## [18] E. Dehghani, M. S. Jabalameli, and A. Jabbarzadeh, “Robust design and optimization of solar photovoltaic supply chain in an uncertain environment,” Energy, vol. 142, pp. 139-156, 2018.## [19] S. Mohseni, M. S. Pishvaee, and H. Sahebi, “Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran,” Energy, vol. 111, pp. 736-755, 2016.## [20] H. Gilani, H. Sahebi, and F. Oliveira, “Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model,” Applied Energy, vol. 278, p. 115653, 2020.## [21] B. Shavazipour, J. Stray, and T. J. Stewart, “Sustainable planning in sugar-bioethanol supply chain under deep uncertainty: A case study of South African sugarcane industry,” Computers and Chemical Engineering, vol. 143, p. 107091, 2020.## [22] M. Rabbani, S. Momen, N. Akbarian , H. FarrokhiAsl, and Z. Ghelichi, “Optimal design for sustainable bioethanol supply chain considering the bioethanol production strategies: A case study,” Computers and Chemical Engineering, vol. 134, p. 106720, 2020.## [23] S. Mohseni and M. S. Pishvaee, “Data-driven robust optimization for wastewater sludge-to-biodiesel supply chain design,” Computers and Industrial Engineering, vol. 139, p. 105944, 2020.## [24] A. Weiss et al., “Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant,” Applied microbiology and biotechnology, vol. 84, no. 5, pp. 987-1001, 2009.## [25] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, “Robust optimization of large-scale systems,” Operations research, vol. 43, no. 2, pp. 264-281, 1995.## [26] K. K. Lai, M. Wang, and L. Liang, “A stochastic approach to professional services firms’ revenue optimization,” European Journal of Operational Research, vol. 182, no. 3, pp. 971-982, 2007.## [27] M. Ehrgott and X. Gandibleux, “Multiobjective combinatorial optimization—theory, methodology, and applications,” in Multiple criteria optimization: State of the art annotated bibliographic surveys: Springer, 2003, pp. 369-444.## [28] J. Bérubé, M. Gendreau, and J. Potvin, “An exact ϵ-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European journal of operational research, vol. 194, no. 1, pp. 39-50, 2009.##
| ||
آمار تعداد مشاهده مقاله: 460 تعداد دریافت فایل اصل مقاله: 243 |