تعداد نشریات | 38 |
تعداد شمارهها | 1,252 |
تعداد مقالات | 9,075 |
تعداد مشاهده مقاله | 8,166,828 |
تعداد دریافت فایل اصل مقاله | 4,928,285 |
توسعه یک مدل ریاضی مکانیابی- موجودی در طراحی شبکه لجستیک یکپارچه مستقیم/ معکوس تحت عدم قطعیت تقاضا و برگشتی با سطوح ظرفیت چندگانه | ||
مدیریت زنجیره تأمین | ||
مقاله 3، دوره 23، شماره 72، آذر 1400، صفحه 23-39 اصل مقاله (507.88 K) | ||
نوع مقاله: پژوهشی | ||
نویسندگان | ||
مهدی سیف برقی* 1؛ مهدی کربلایی اسماعیلی2 | ||
1گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه الزهرا، دانشکده فنی، تهران، ایران | ||
2گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، شعبه قزوین، قزوین، ایران | ||
تاریخ دریافت: 25 مرداد 1400، تاریخ بازنگری: 07 بهمن 1400، تاریخ پذیرش: 09 بهمن 1400 | ||
چکیده | ||
اﻣﺮوزه ﻣﺤﯿﻂ ﺗﺠﺎری رﻗﺎﺑﺘﯽ ﻣﻨﺠﺮ ﺑﻪ ﻫﻤﮑﺎری ﻓﺰاﯾﻨﺪه ﻣﯿﺎن شرکتها بهعنوان اﻋﻀﺎی شبکه زﻧﺠﯿﺮه تأمین شده اﺳﺖ. در اﯾﻦ زﻣﯿﻨﻪ، طراحی شبکه ﻟﺠﺴﺘﯿﮏ زنجیره تأمین ﺑـﺎ ﺗﻮﺟـﻪ ﺑـه ﺗﺄﺛﯿﺮ آن بر کارایی و ﭘﺎﺳﺨﮕﻮﯾﯽ زﻧﺠﯿﺮه از موضوعات مهم استراتژیک بهشمار میرود. ﻋﻼوهﺑﺮ اﯾﻦ، در سالهای اﺧﯿﺮ ﺗﻮﺟﻪ ﺑﻪ ﻣﺴـﺎﺋﻞ زیستمحیطی، اﻟﺰاﻣﺎت ﻗﺎﻧﻮﻧﯽ و نیز منافع اﻗﺘﺼـﺎدی توجه خاصی بر لجستیک معکوس صورت گرفته است. در این مقاله ﺑـﻪ اراﺋﻪ ﯾﮏ ﻣﺪل مکانیابی- موجودی و از نوع برنامهریزی ﺧﻄﯽ ﻋﺪد ﺻـﺤﯿﺢ آﻣﯿﺨﺘـﻪ احتمالی برای طراحی ﯾﮑﭙﺎرﭼـﻪ ﺷـﺒﮑﻪ ﯾـﮏ زنجیره تأمین حلقه بسته ﭼﻨﺪ کالایی و چند دورهای با در نظر گرفتن سطوح ظرفیت چندگانه پرداخته میشود. همچنین برای انطباق شبکه لجستیک مورد نظر با دنیای واقعی، مقدار تقاضای مشتریان و بالطبع مقدار برگشتی تحت عدم قطعیت و بهصورت تصادفی در نظر گرفته شدهاند. با توجه به اینکه مسئله مکانیابی تسهیلات با ظرفیت محدود در این تحقیق بهدستة مسائل سخت تعلق دارد، لذا برای حل آن به ارائه دو روش فرا ابتکاری مبتنیبر الگوریتم زنبورها و الگوریتم ژنتیک پرداخته و مقایسه جوابهای این دو روش براساس مسائل عددی طراحی شده صورت گرفته است. از نظر مقدار تابع هدف، عملکرد الگوریتم ژنتیک بهطور متوسط 6/11درصد پایینتر از زنبور عسل بوده و از منظر زمان حل عملکرد الگوریتم زنبور عسل به میزان قابل ملاحظهای (به طور متوسط نزدیک به 5 برابر) پایینتر از الگوریتم ژنتیک است. | ||
کلیدواژهها | ||
زنجیره تأمین حلقه بسته؛ طراحی شبکه؛ عدم قطعیت؛ الگوریتم ژنتیک؛ الگوریتم زنبور عسل | ||
عنوان مقاله [English] | ||
A Mathematical Location-Inventory Model for Designing a Forward /Backward Logistic Network under Demand and Return Uncertainty with Multiple Capacity Levels | ||
نویسندگان [English] | ||
Mehdi Seifbarghy1؛ Mehdi Karbalaei Esmaeili2 | ||
1Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran | ||
22Department of Industrial Engineering, Faculty of Mechanical and Industrial Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran | ||
چکیده [English] | ||
Today, the competitive business environment has led to increasing cooperation among companies as the members of supply chain networks. In this area, the supply chain logistics network design is an important subject due to its effect on the responsiveness and efficiency. Over the past few years, due to environmental issues, their legal requirements and economic benefits, great attention has been paid to inverse logistics. In this paper, a mixed integer stochastic location-inventory model has been proposed for the integrated design of the network of a multi-period multi-product closed loop supply chain considering multiple capacity levels for facilities. The market demand and correspondingly the return value are considered to be uncertain in order to make the model close to the real-life conditions. Since the capacitated facility location problem considered in this research is an NP-hard type problem, we have used two meta-heuristic algorithms including the genetic algorithm (GA) and the Bees algorithms (BA) for solving this problem. Some numerical problems are designed and solved to assess the performance of the model and solution heuristics. From the viewpoint of solution quality, the BA outperforms the GA (by an average of 11.6%) whilst from the viewpoint of solution time, the GA is five times faster than the BA on average. | ||
کلیدواژهها [English] | ||
Closed Loop Supply Chain, Network Design, Uncertainty, Genetic Algorithm, Bees Algorithm | ||
مراجع | ||
[1] N. Darabi, F. Barzinpour, and A. Makui, “A model for designing an integrated forward and reverse logistics network considering returned products pricing. 2th International Conference of Logistics and Supply Chain,” 2011. (In Persian)## [2] L. Meade, J. Sarkis, and A. Presley, “The theory and practice of reverse logistics,” International Journal of Logistics Systems and Management, vol. 3, pp. 56-84, 2007.## [3] E. Keyvanshokooh, M. Fattahi, S. Seyed-Hosseini, and R. Tavakkoli-Moghaddam, “A dynamic pricing approach for returned products in integrated forward/reverse logistics network design,” Applied Mathematical Modelling, vol. 37, pp. 10182-10202, 2013.## [4] A. Amiri, “Designing a distribution network in a supply chain system. formulation and efficient solution procedure,” European Journal of Operational Research, vol.171, pp. 567-576, 2006.## [5] M. Fleischmann P. Beullens, J. M. Bloemhofruwaard, and L. Wassenhove, “The impact of product recovery on logistics network design, Production and Operations Management, vol. 10, no. 6, pp. 156–173, 2001.## [6] M. S. Pishvaee, R. Z. Farahani, and W. A. Dullaert, “memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operations Research,” vol. 37, no. 6, pp. 11001112, 2010.## [7] D. H. Lee and M. A. Dong, “heuristic approach to logistics network design for end-of-lease computer products recovery,” Transportation Research: Part E, vol. 44, pp. 455–474, 2008.## [8] M. J. Tarokh, M. EsmaeiliGookeh, and Sh. Torabi, [9] J. Razmi and M. S. Pishvaee, “Quantitative methods for reverse logistics management,” The Institution of Trade Studies and Researches, Tehran, Iran, 2021. (In Persian)## [10] S. Hasanzadeh Amin and G. Zhang, “A multi objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modeling,” vol. 37, [11] L. Kroon and G. Vrijens, “Returnable containers: An example of reverse logistics. International Journal of Physical Distribution and Logistics Management,” vol. 25, pp. 56–68, 1995.## [12] A. I. Barros, R. Dekker, and V. Scholten, “A twolevel network for recycling sand: a case study,” European Journal of Operational Research, vol. 110, pp.199–214, 1998.## [13] V. Jayaraman, V. Guide, and R. Srivastava, “A closed-loop logistics model for remanufacturing,” Journal of the operational research society, vol. 50, pp. 497-508, 1999.## [14] H. R. Krikke, A. Van Harten, P. C. Schuur, “Business caseOcé: reverse logistic network redesign for copiers. OR Spectrom,” vol. 21, no. 6, pp. 381-409, 1999.## [15] V. Jayaraman, R. A. Patterson, and E. Rolland, “The design of reverse distribution networks: Models and solution procedures,” European Journal [16] H. Min, H. J. Ko, and B. I. Park, “A lagrangian relaxation heuristic for solving the multi-echelon, multi-commodity, closed-loop supply chain network design problem,” International Journal of Logistics Systems and Management,vol. 1, no. 4, pp. 382–404, 2005.## [17] H. Min, H. J. Ko, and C. S. Ko, “A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns. Omega,” vol. 34, pp. 56 – 69, 2006.## [18] K. Kim, I. Song, J. Kim, and B. Jeong, “Supply planning model for remanufacturing system in reverse logistics environment,” Computers and Industrial Engineering, vol. 51, no. 2, pp. 279–287, 2006.## [19] H. Üster, G. Easwaran, E. Akçali, and S. Çetinkaya, “Benders decomposition with alternative multiple cuts for a multi product closed loop supply chain network design model,” Naval Research Logistics, vol. 54, [20] J. Q. Frota Neto, J. Bloemhof, A. A. E. Van Nunen, and E. VanHeck, “Designing and evaluating sustainable logistics network,” International journal of production Economics, vol. 111, no. 3, pp. 195-208, 2008.## [21] R. K. Pati, P. Vrat, and P. Kumar, “A goal programming model for paper recycling system,” Omega, vol. 36, pp. 405–417, 2008.## [22] B. Vahdani, M. Sharifi, “An inexact-fuzzy-stochastic optimization model for a closed loop supply chain network design problem,” Journal of Optimization in Industrial Engineering, vol. 6, no. 12, pp.7-16, 2013.## [23] E. Roghanian and P. Pazhoheshfar, “An optimization model for reverse logistics network under stochastic environment by using genetic algorithm,” Journal of Manufacturing Systems, vol.33, no. 3, pp. 348-356, 2014## [24] H. Soleimani, M. Seyyed-Esfahani, and M. Shirazi, “Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm. The International Journal of Advanced Manufacturing Technology,” vol. 68, [25] A. Ç. Suyabatmaz, F. T. Altekin, and G. Şahin, “Hybrid simulation-analytical modeling approaches for the reverse logistics network design of a thirdparty logistics provider. Computers and Industrial Engineering, vol.70, pp. 74-89, 2014.## [26] H. Soleimani and G. Kannan, “A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling,” vol. 39, pp. 3990-4012, 2015.## [27] E. Ahmadzadeh and B. Vahdani, “A locationinventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers and Chemical [28] M. Fathi, M. Khakifirooz, A. Diabat, and H. Chen, “An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network,” International Journal of Production Economics, vol. 237, pp. 108109, 2021.## [29] M. Seifbarghy and S .Malekpour Kolbadinejhad, “Development of a closed loop supply chain network considering environmental factors and location-inventory decisions under uncertainty,” Iranian Journal of Supply Chain Management, vol. 22, no. 67, pp. 4-22, 2020. (In Persian)## [30] S. Hasanzadeh Amin and G. Zhang, “A multiobjective facility location model for closed-loop supply chain network under uncertain demand and return,” Applied Mathematical Modeling, vol. 37,
| ||
آمار تعداد مشاهده مقاله: 306 تعداد دریافت فایل اصل مقاله: 313 |