تعداد نشریات | 36 |
تعداد شمارهها | 1,203 |
تعداد مقالات | 8,704 |
تعداد مشاهده مقاله | 7,207,069 |
تعداد دریافت فایل اصل مقاله | 4,210,509 |
بهبود تخصیص منابع اینترنت اشیاء در محاسبات مه با استفاده از نظریه بازی غیر همکارانه | ||
پدافند الکترونیکی و سایبری | ||
مقاله 12، دوره 9، شماره 4 - شماره پیاپی 36، اسفند 1400، صفحه 147-158 اصل مقاله (933.8 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
هوشیار محمدی تلوار1؛ سیدحمید حاج سیدجوادی2؛ حمیدرضا نویدی* 2؛ افشین رضاخانی3 | ||
1دانشیار، گروه کامپیوتر،دانشگاه آزاد اسلامی واحد بروجرد، بروجرد، ایران | ||
2دانشیار، گروه کامپیوتر، دانشگاه شاهد، تهران، ایران | ||
3استادیار،گروه کامپیوتر،دانشگاه آیت الله بروجردی،بروجرد، ایران | ||
تاریخ دریافت: 20 شهریور 1400، تاریخ بازنگری: 27 آذر 1400، تاریخ پذیرش: 24 مهر 1400 | ||
چکیده | ||
در سیستمهای شبکهای مبتنی بر اینترنت اشیاء از یک معماری مدرن به نام محاسبات مه استفاده میشود. در معماری محاسبات مه ارائهی خدمات داده اقتصادی و کم تأخیر است. این مقاله به حل چالش اصلی تخصیص منابع محاسباتی در رایانش مه میپردازد. حل چالش تخصیص منابع منجر به افزایش سود، صرفهجویی اقتصادی و استفادهی بهینه از سیستمهای محاسباتی میشود. در این پژوهش با استفاده از الگوریتم ترکیبی تعادل نش و الگوریتم مزایده، تخصیص منابع بهبودیافته است. در روش پیشنهادی، به هر بازیکن یک ماتریس اختصاص دادهشده است. ماتریس هر بازیکن شامل تخصیص گرههای مه، مشترکین خدمات داده و اپراتورهای خدمات داده است. در هر مرحله از الگوریتم، هر بازیکن بر اساس راهبرد سایر بازیکنان بهترین راهبرد را تولید میکند. نتایج پژوهش نشان از برتری بهرهوری گره مه و بهرهوری اپراتور خدمات داده در روش پیشنهادی در مقایسه با الگوریتم بازی استکلبرگ دارد. اولین مقایسه بر اساس تغییرات مشترکین صورت گرفته است که بهرهوری گره مه با 240 مشترک استفادهشده در روش پیشنهادی 8/6852 بوده و در روش استکلبرگ با شرایط یکسان 2/5510 میباشد. دومین مقایسه بر اساس نرخ سرویس بلوکهای کنترلی منابع (μ) میباشد که بهرهوری اپراتور خدمات دادهای با μ=4 در روش پیشنهادی 1.35E+07 بوده و در روش استکلبرگ با شرایط یکسان 1E+7 میباشد. | ||
کلیدواژهها | ||
محاسبات مه؛ تخصیص منابع؛ اینترنت اشیاء؛ تعادل نش؛ الگوریتم مزایده | ||
عنوان مقاله [English] | ||
The IoT Resource Allocation Improvement in Fog Computing Using Non-Cooperative Game Theory | ||
نویسندگان [English] | ||
houshyar mohammady talvar1؛ sayed hamid haj seyyed javadi2؛ Hamidreza Navidi2؛ afshin rezakhani3 | ||
1Associate Professor, Department of Computer, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran | ||
2Associate Professor, Department of Computer, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran | ||
3Assistant Professor, Computer Department, Ayatollah Borujerdi University, Borujerd, Iran | ||
چکیده [English] | ||
A modern architecture called fog computing is used in the IoT-based network systems. Providing data services is economical and low latent in the fog computing architecture. This paper addresses the main challenge of allocating computing resources in fog computing. Solving the resource allocation challenge leads to increased profits, economic savings, and optimal use of the computing systems. In this survey, resource allocation has been improved by using the combined Nash equilibrium algorithm and the auction algorithm. In the proposed method, each player is assigned a specific matrix. Each player’s matrix includes fog nodes, data service subscribers, and data service operators. At each stage of the algorithm, each player generates the best strategy based on the strategy of the other players. The results show the superiority of fog node utility and data service operator utility in the proposed method compared with the Stackelberg game algorithm. The first comparison is based on the changes of subscribers in which the productivity of the node with 240 used subscribers in the proposed method is 6852.8 whilst it is 5510.2 in the Stackelberg method with the same conditions. The second comparison is based on the service rate of the resource control blocks (μ) in which the productivity of the data service operator with μ=4 in the proposed method is 1.35E + 07 whilst it is 1E + 7 in the Stackelberg method with the same conditions . | ||
کلیدواژهها [English] | ||
Fog computing, Resource Allocation, IoT, Nash Equilibrium, Auction Algorithm | ||
مراجع | ||
[1] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, "Computing resource allocation in three-tier IoT fog networks: A joint optimization approach combining Stackelberg game and matching," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1204-1215, 2017. [2] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and Z. Han, "Fog computing in multi-tier data center networks: A hierarchical game approach," in 2016 IEEE international conference on communications (ICC), 2016: IEEE, pp. 1-6. [3] Y. Cao, S. Chen, P. Hou, and D. Brown, "FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation," in 2015 IEEE international conference on networking, architecture and storage (NAS), 2015: IEEE, pp. 2-11. [4] V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, and G. Tamm, "Smart items, fog and cloud computing as enablers of servitization in healthcare," Sensors & Transducers, vol. 185, no. 2, pp. 121-128, 2014. [5] J. K. Zao et al., "Augmented brain computer interaction based on fog computing and linked data," in 2014 International conference on intelligent environments, 2014: IEEE, pp. 374-377. [6] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi, "Improving web sites performance using edge servers in fog computing architecture," in 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, 2013: IEEE, pp. 320-323. [7] B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma, "Cloud computing for Internet of Things & sensing based applications," in 2012 Sixth International Conference on Sensing Technology (ICST), 2012: IEEE, pp. 374-380. [8] C. C. Byers and P. Wetterwald, "Fog computing distributing data and intelligence for resiliency and scale necessary for iot: The internet of things (ubiquity symposium)," Ubiquity, vol. 2015, no. November, pp. 1-12, 2015. [9] S. Agarwal, S. Yadav, and A. K. Yadav, "An architecture for elastic resource allocation in fog computing," Int. J. Comput. Sci. Commun, vol. 6, no. 2, pp. 201-207, 2015. [10] M. Aazam and E.-N. Huh, "Dynamic resource provisioning through fog micro datacenter," in 2015 IEEE international conference on pervasive computing and communication workshops (PerCom workshops), 2015: IEEE, pp. 105-110. [11] A. Munir, P. Kansakar, and S. U. Khan, "IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things," IEEE Consumer Electronics Magazine, vol. 6, no. 3, pp. 74-82, 2017. [12] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, and M. Aazam, "An architecture of IoT service delegation and resource allocation based on collaboration between fog and cloud computing," Mobile Information Systems, vol. 2016, 2016. [13] A. Shahidinejad, "A Mutual Authentication Protocol for IoT Users in Cloud Environment," Electronic and Cyber Defense, 2021. (In Persian) [14] S. K. Roy and A. Bhaumik, "Intelligent water management: a triangular type-2 intuitionistic fuzzy matrix games approach," Water resources management, vol. 32, no. 3, pp. 949-968, 2018. [15] A. Bhaumik, S. K. Roy, and D.-F. Li, "Analysis of triangular intuitionistic fuzzy matrix games using robust ranking," Journal of Intelligent & Fuzzy Systems, vol. 33, no. 1, pp. 327-336, 2017. [16] A. Bhaumik, S. K. Roy, and G. W. Weber, "Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoners’ dilemma game theory using TOPSIS: a case study on Human-trafficking," Central European Journal of Operations Research, vol. 28, no. 2, pp. 797-816, 2020. [17] A. Bhaumik, S. K. Roy, and D.-F. Li, "(α, β, γ)-cut set based ranking approach to solving bi-matrix games in neutrosophic environment," Soft Computing, vol. 25, no. 4, pp. 2729-2739, 2021. [18] A. Bhaumik and S. K. Roy, "Intuitionistic interval-valued hesitant fuzzy matrix games with a new aggregation operator for solving management problem," Granular Computing, vol. 6, no. 2, pp. 359-375, 2021. [19] A. Bhaumik, S. K. Roy, and G. W. Weber, "Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management," Journal of Dynamics & Games, vol. 8, no. 2, p. 101, 2021. [20] E.-S. Ammar, M. Brikaa, and E. Abdel-Rehim, "A study on two-person zero-sum rough interval continuous differential games," OPSEARCH, vol. 56, no. 3, pp. 689-716, 2019. [21] A. Mebrek and A. Yassine, "Intelligent Resource Allocation and Task Offloading Model for IoT Applications in Fog Networks: A Game-Theoretic Approach," IEEE Transactions on Emerging Topics in Computational Intelligence, 2021. [22] D. M. Khudhur, T. A. Yahiya, and P. Kirci, "Applying Game Theory Concept to Improve Resource Allocation in Mobile Edge Computing," in International Conference on Mobile Web and Intelligent Information Systems, 2021: Springer, pp. 108-118. | ||
آمار تعداد مشاهده مقاله: 617 تعداد دریافت فایل اصل مقاله: 471 |