تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,993 |
تعداد مشاهده مقاله | 7,843,341 |
تعداد دریافت فایل اصل مقاله | 4,705,057 |
تقویتکننده کمنویز فراپهن باند با استفاده از تکنیک معکوسکننده با پیکزنی القایی | ||
الکترومغناطیس کاربردی | ||
دوره 10، شماره 1 - شماره پیاپی 24، فروردین 1401، صفحه 109-120 اصل مقاله (1.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مهدی بکرانی* 1؛ محمد مهدی تسخیری2؛ سیدعلی آسایش3 | ||
1استادیار، دانشگاه صنعتی قم، قم، ایران | ||
2استادیار، گروه مخابرات و الکترونیک، دانشکده برق و کامپیوتر، دانشگاه صنعتی قم، قم ، ایران | ||
3کارشناسی ارشد، دانشگاه صنعتی قم، قم، ایران | ||
تاریخ دریافت: 10 شهریور 1400، تاریخ بازنگری: 14 اسفند 1400، تاریخ پذیرش: 29 دی 1400 | ||
چکیده | ||
در این مقاله، یک تقویتکننده کمنویز در باند فرکانسی فراپهن GHz 3/1-10/6 با استفاده از تکنولوژی CMOS 130 nm طراحی شده است. در این مدار از تکنیک سورس تبهگنی برای گسترش پهنای باند و ایجاد تطبیق ورودی و از تکنیک استفاده مجدد جریان برای دستیابی به بهره بالا استفاده میشود. همچنین از آنجا که اغلب تکنیکهای تطبیق امپدانس خروجی موجب تضعیف بهره یا خطسانی میشود، از تکنیک معکوسکننده با پیکزنی القایی استفاده شده است تا علاوهبر فراهم نمودن تطبیق امپدانس 50 اهمی در خروجی، بهره و خطسانی را نیز بهبود دهد. این تکنیک رفتار هارمونیک سوم را بهبود و بهره را dB 2/7 افزایش داده است. مدار پیشنهادی دارای S11 کمتر از S22، dB -1/9 کمتر از dB -10، ماکزیمم بهرهdB 19/6، عدد نویز بین 7/dB 2-2، توان مصرفی mw 28 و IIP3 با مقدار dBm -3/5 میباشد. همچنین ابعاد جانشانی طرح برابر µm 701/4 × µm 991/84 است. مزایای ساختار پیشنهادی در مقایسه با ساختارهای فراپهن با تکنولوژی یکسان، در بهره بالاتر، عدد نویز کمتر و تطبیق بهتر خروجی میباشد. | ||
کلیدواژهها | ||
تقویتکننده کمنویز؛ تبهگنی سورس؛ استفاده مجدد از جریان؛ پیکزنی القایی؛ خطسانی | ||
عنوان مقاله [English] | ||
The Presentation of a Low Noise UWB Amplifier Using an Inverter with Inductive Peaking Technique | ||
نویسندگان [English] | ||
Mehdi Bekrani1؛ mohammad mahdi taskhiri2؛ Seyed Ali Asayesh3 | ||
1Assistant Professor, Qom University of Technology, Qom, Iran | ||
2Assistant Professor, Department of Telecommunications and Electronics, Faculty of Electrical and Computer Engineering, Qom University of Technology, Qom, Iran | ||
3M.Sc., Qom University of Technology, Qom, Iran | ||
چکیده [English] | ||
In this paper, a 3.1 to 10.6 GHz low noise amplifier is designed using the 130 nm CMOS technology. In this circuit, the source degeneration technique is employed to increase the bandwidth and achieve input impedance matching. In addition, a current reuse technique is employed to achieve a high gain. Since most output impedance matching techniques degrade the gain or linearity, an inverter along with an inductive peaking technique is used to provide the output impedance matching of 50 ohms and to improve both the linearity and gain. This technique enhances the third harmonic behavior and increases the gain by 2.7 dB. The proposed circuit achieves S11 of less than - 9.1dB, S22 of less than -10 dB, the maximum gain of 19.7 dB, NF of 2 to 2.7 dB, and IIP3 of -3.5 dBm. Moreover, the power consumption of the proposed circuit is 28 mw and the core layout size is 991.84 μm×701.4 μm. The advantages of the proposed circuit over UWB structures with the same technology are higher gain, lower noise figure (NF), and better output matching. | ||
کلیدواژهها [English] | ||
Low noise amplifier, source degeneration, current reuse, inductive peaking, linearity | ||
مراجع | ||
[1] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275-282, 2004. [2] Z. Chang and W. M. C. Sansen, “Low-noise wide-band amplifiers in bipolar and CMOS technologies,” The Springer International Series in Engineering and Computer Science, US, 1991. [3] B. Razavi, “RF microelectronics,” Communications Engineering and Emerging Technologies Series, Prentice Hall Press, NJ, USA ” 2nd Ed., 2011. [4] M. Takbiri, A. Bijari, and S. M. Razavi, “A low voltage, high gain, fully differential CMOS low-noise amplifier for ultra-wideband applications,” Scientific Journal of Applied Electromagnetics, vol. 3, no. 4, pp. 47-56, 2017 (In Persian). [5] A. Liscidini, M. Brandolini, D. Sanzogni, and R. Castello, “A 0.13μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 41, pp. 981–989, 2006. [6] W. H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A highly linear broadband CMOS LNA employing noise and distortion cancellation,” IEEE J. Solid-State Circuits, vol. 43, pp. 1164–1176, 2008. [7] P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, pp. 1892–1905, 2007. [8] F. Zhang and P. R. Kinget, “Low-power programmable gain CMOS distributed LNA,” IEEE J. Solid-State Circuits, vol. 41, pp. 1333–1343, 2007. [9] B. G. Perumana, J. H. C. Zhan, S. S. Taylor, B.R. Carlton, and J. Laskar, “Resistive-feedback CMOS low-noise amplifiers for multiband applications,” IEEE Trans.Microw. Theory Tech., vol. 56, pp. 1218–1225, 2008. [10] Y. C. Chen and S. S. Lu, “Analysis and design of CMOS broadband amplifier with dual feedback loops,” IEEE ASIA-PACIFIC conference proceedings, pp. 245-248, Taipei, Taiwan, 2002. [11] C. H. Wu, C. H. Lee, W. S. Chen, and S. I. Liu, “CMOS wideband amplifiers using multiple inductive-sereis peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548–552, 2005. [12] A. Parssinen, S. Lindfors, J. Ryynanen, S. I. Long, and K. Halonen, “1.8 GHz CMOS LNA with on-chip DC-coupling for a subsampling direct conversion front-end,” ISCAS Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, pp. [13] D. Malathi and M. Gomathi, “Design of inductively degenerated common source RF CMOS low noise amplifier,” Sādhanā 44, vol. 4, 2019. [14] H. Y. Chen, G. W. Huang, K. M. Chen, and C. Y. Chang, “Noise parameters computation of microwave devices using genetic algorithms,” IEICE Transactions on Electronics, 2005. [15] T. C. Carusons, D. Johns, and K. Martin, “Analog integrated circuit design,” John Wiley & Sons, Inc. New York, 2nd Ed., 2011. [16] M. Hayati, S. Cheraghaliei, and S. Zarghami, “Design of UWB low noise amplifier using noise canceling and current-reused techniques,” Integration, vol. 60, pp.232- 239, 2018. [17] N. Salehi, M. Bekrani, H. Zayyani, and M. M. Taskhiri, “A fully Differential Ultra Wideband Common-Gate Low Noise Amplifier,”Electronics Industries, vol. 10, no. 3, Autumn 2019, pp. 43-58, (In Persian). [18] Y. S. Lin, C. C. Wang, G. L. Lee, and C. C. Chen, “High-performance wideband low-noise amplifier using enhanced π-match input network,” IEEE Microwave and Wireless Components Letters, vol. 24, pp. 200–202, 2014. [19] Q. Li and Y. P. Zhang, “A 2–9.6 GHz inductor -less low-noise amplifier in 0.13 μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2015-2023, 2010. [20] C. H. Cheong, N. M. Noh, and H. Ramiah, “A wideband Low Noise Amplifier for cognitive radio in 0.13 μm CMOS,” in International SoC Design Conference (ISOCC), pp. 326-328, 2013. [21] H. Rastegar and J. Y. Ryu, “A broadband low noise amplifier with built-in linearizer in 0.13-μm CMOS process,” Microelectronics Journal, vol. 46, 2015. [22] S. Arshad, R. Ramzan, K. Muhammad, and Q. U. Wahab, “A sub-10 mW, noise cancelling, wideband LNA for UWB applications,” AEU - International Journal of Electronics and Communications, vol. 69, no. 1, pp. 109-118, 2015. [23] N. Li, W. Feng, and X. Li, “A CMOS 3–12 GHz ultrawideband low noise amplifier by dual-resonance network,” IEEE Microwave and Wireless Components Letters, vol. 27, pp. 383- 385, 2017. [24] A. Zokaei, K. El-Sankary, D. Trukhachev, and A. Amirabadi, “A dual feedback wideband differential low noise amplifier in l30 nm CMOS process,” 26th International Conference on Mixed Design of Integrated Circuits and Systems, Rzeszów, Poland, pp. 137-140, 2019. [25] C. Cao, et al. “A triple-cascode X-band LNA design with modified post-distortion network,” Electronics, vol. 10, no. 5, 2021. [26] M. A. Roein, “Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with current reused technique,” 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, [27] H. Zhou, Y. Zhang, and Y. Yu, “Ultra-wideband low noise amplifier employing noise cancelling and simultaneous input and noise matching technique,” IEICE Electronics Express, vol. 16, no. 11, p. 20190274, 2019. [28] S. Manjula, M. Malleshwari, and M. Suganthy, “Design of low power UWB CMOS low noise amplifier using active inductor for WLAN receiver,” International Journal of Engineering and Technology (UAE), vol. 7, pp. 448-450, 2018. [29] H. Khosravi, M. Sheikhi, A. Bijari and N. Kandalaft, “3.5-9 GHz ultra-wideband LNA with variable gain and noise cancellation for wireless communication,” 10th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0396-0401, 2020. | ||
آمار تعداد مشاهده مقاله: 1,018 تعداد دریافت فایل اصل مقاله: 1,077 |