تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,993 |
تعداد مشاهده مقاله | 7,843,248 |
تعداد دریافت فایل اصل مقاله | 4,704,972 |
تحلیل ارتعاشات آزاد تیرهای متخلخل تابعی مدرج روی بستر الاستیک در محیط حرارتی با روش مربعات دیفرانسیلی | ||
مکانیک هوافضا | ||
مقاله 12، دوره 18، شماره 1 - شماره پیاپی 67، خرداد 1401، صفحه 183-199 اصل مقاله (1.64 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
مهدی خاک پور1؛ یوسف بازرگان لاری* 2؛ پرهام زاهدی نژاد3؛ محمدجواد کاظم زاده پارسی4 | ||
1دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز، ایران | ||
2نویسنده مسئول: استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز، ایران | ||
3استادیار، دانشکده مهندسی مکانیک و انرژی، دانشگاه تگزاس شمالی، تگزاس، ایلات متحده آمریکا | ||
4دانشیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز، ایران | ||
تاریخ دریافت: 11 تیر 1400، تاریخ بازنگری: 10 مهر 1400، تاریخ پذیرش: 20 دی 1400 | ||
چکیده | ||
در این مقاله ارتعاشات آزاد تیرهای متخلخل تابعی مدرج با شرایط مرزی ساده، روی بستر الاستیک در محیط حرارتی با استفاده از تئوری تغییر شکل برشی مرتبه سوم ردی، موردمطالعه قرار گرفت. خواص مواد به دما وابسته بوده و بهطور پیوسته در جهت ضخامت تیر و بر اساس مدل توانی توزیع کسر حجمی مواد تشکیل دهنده تغییر میکند. توزیع تخلخل یکنواخت در سطح مقطع موردبررسی قرار میگیرد. اصل همیلتون برای به دست آوردن معادلات حاکم بر حرکت به کار گرفته شد. بهمنظور گسسته سازی این معادلات، روش مربعات دیفرانسیلی تعمیمیافته استفادهشده است. در اینجا اثر پارامترهای مختلف از قبیل نوع میدان حرارتی، مقدار اختلاف دما، شاخص قانون توانی، کسر حجمی تخلخل، نسبت لاغری و پارامترهای بستر الاستیک روی فرکانسهای طبیعی تیر متخلخل تابعی مدرج و برای شرایط تکیهگاهی ساده، موردمطالعه قرار گرفت. نتایج علاوه برنشان دادن این تأثیرات بر رفتار ترمومکانیکی تیر، صحت روش عددی مورداستفاده را نیز تأیید مینماید. | ||
کلیدواژهها | ||
ارتعاشات آزاد؛ تیرهای متخلخل تابعی مدرج؛ محیط حرارتی؛ بستر الاستیک؛ روش مربعات دیفرانسیلی | ||
عنوان مقاله [English] | ||
Analysis of Free Vibrations of Functionally Graded Porous Beams on Elastic Foundation in Thermal Environment Using Differential Quadrature Method | ||
نویسندگان [English] | ||
Mahdi Khakpour1؛ Yousef Bazargan-Lari2؛ Parham Zahedinejad3؛ Mohammad Javad Kazemzadeh-Parsi4 | ||
1Ph.D. Student, Faculty of Mechanical Engineering, Islamic Azad University Shiraz Branch, Shiraz, Iran | ||
2Corresponding author: Assistant Professor, Faculty of Mechanical Engineering, Islamic Azad University Shiraz Branch, Shiraz, Iran | ||
3Assistant Professor, Faculty of Mechanical and Energy Engineering, North Texas University, Texas, USA | ||
4Associate Professor, Faculty of Mechanical Engineering, Islamic Azad University Shiraz Branch, Shiraz, Iran | ||
چکیده [English] | ||
In this paper, the free vibrations of functionally graded porous beams with simple boundary conditions on an elastic foundation in a thermal environment were studied using the theory of third-order shear deformation. The properties of the material are temperature dependent and continuously change in the direction of the thickness of the beam and according to the power law distribution of the volume fraction of the material constituents. The uniform porosity distribution at the cross section is examined. Hamilton's principle was used to obtain the governing equations of motion. In order to discretize these equations, the generalized differential quadrature method has been used. Here, the effect of various parameters such as heat field type, temperature difference, power law index, porosity volume fraction, slenderness ratio and elastic foundation parameters on the natural frequencies of a functionally graded porous beam was studied for simple boundary conditions. The results, in addition to showing these effects on the thermomechanical behavior of the beam, also confirm the accuracy of the numerical method used. | ||
کلیدواژهها [English] | ||
Free Vibration, Functionally Graded Porous Beams, Thermal Environment, Elastic Foundation, Differential Quadrature Method | ||
مراجع | ||
[1] Tomota Y, Kuroki K, Mori T, Tamura I. Tensile deformation of two-ductile-phase alloys: Flow curves of α-γ Fe-Cr-Ni alloys. Materials Science and Engineering. 1976;24(1):85-94.## [2] Koizumi M. FGM activities in Japan. Composites Part B: Engineering. 1997;28(1-2):1-4.## [3] Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges. Materials & design. 2007;28(5):1651-6.## [4] Benatta M, Mechab I, Tounsi A, Bedia EA. Static analysis of functionally graded short beams including warping and shear deformation effects. Computational Materials Science. 2008;44(2):765-73.## [5] Ben-Oumrane S, Abedlouahed T, Ismail M, Mohamed BB, Mustapha M, El Abbas AB. A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams. Computational Materials Science. 2009;44(4):1344-50.## [6] Sina S, Navazi H, Haddadpour H. An analytical method for free vibration analysis of functionally graded beams. Materials & Design. 2009;30(3):741-7.## [7] Şimşek M. Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences. 2009;1(3):1-11.## [8] Kocatürk T, Şimşek M, Akbaş ŞD. Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material. Science and Engineering of Composite Materials. 2011;18(1-2):21-34.## [9] Su H, Banerjee J, Cheung C. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures. 2013;106:854-62.## [10] Rezaiee-Pajand M, Hozhabrossadati SM. Analytical and numerical method for free vibration of double-axially functionally graded beams. Composite Structures. 2016;152:488-98.## [11] Ghayesh MH. Vibration analysis of shear-deformable AFG imperfect beams. Composite Structures. 2018;200:910-20.## [12] Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures. 2008;83(1):48-60.## [13] Şimşek M, Kocatürk T. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures. 2009;90(4):465-73.## [14] Alshorbagy AE, Eltaher MA, Mahmoud F. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling. 2011;35(1):412-25.## [15] Özütok A, Madenci E. Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation. International journal of structural stability and dynamics. 2013;13(02):1250056.## [16] Pradhan K, Chakraverty S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Composites Part B: Engineering. 2013;51:175-84.## [17] Chakraborty A, Gopalakrishnan S, Reddy J. A new beam finite element for the analysis of functionally graded materials. International journal of mechanical sciences. 2003;45(3):519-39.## [18] Li X-F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. Journal of Sound and vibration. 2008;318(4-5):1210-29.## [19] Wu H, Kitipornchai S, Yang J. Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. International Journal of Structural Stability and Dynamics. 2015;15(07):1540011.## [20] Wen Y, Zeng Q. A high-order finite element formulation for vibration analysis of beam-type structures. International Journal of Structural Stability and Dynamics. 2009;9(04):649-60.## [21] Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design. 2010;240(4):697-705.## [22] Zhou D. A general solution to vibrations of beams on variable Winkler elastic foundation. Computers & structures. 1993;47(1):83-90.## [23] Eisenberger M. Vibration frequencies for beams on variable one-and two-parameter elastic foundations. Journal of Sound and Vibration. 1994;176(5):577-84.## [24] Matsunaga H. Vibration and buckling of deep beam-columns on two-parameter elastic foundations. Journal of sound and vibration. 1999;228(2):359-76.## [25] Chen C-N. DQEM vibration analyses of nonprismatic beams resting on elastic foundations. International Journal of Structural Stability and Dynamics. 2002;2(01):99-115.## [26] Malekzadeh P, Karami G. A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Applied Mathematical Modelling. 2008;32(7):1381-94.## [27] Ying J, Lü C, Chen W. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures. 2008;84(3):209-19.## [28] Thai H-T, Vo TP. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International journal of mechanical sciences. 2012;62(1):57-66.## [29] Aghazadeh R, Cigeroglu E, Dag S. Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. European Journal of Mechanics-A/Solids. 2014;46:1-11.## [30] Akbaş ŞD. Free vibration and bending of functionally graded beams resting on elastic foundation. Research on Engineering Structures and Materials. 2015;1(1):25-37.## [31] Pradhan S, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. Journal of Sound and Vibration. 2009;321(1-2):342-62.## [32] Mahi A, Bedia EA, Tounsi A, Mechab I. An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions. Composite structures. 2010;92(8):1877-87.## [33] Shen H-S, Wang Z-X. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences. 2014;81:195-206.## [34] Trinh LC, Vo TP, Thai H-T, Nguyen T-K. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering. 2016;100:152-63.## [35] El-Megharbel A. A theoretical analysis of functionally graded beam under thermal loading. World Journal of Engineering and Technology. 2016;4(3):437-49.## [36] Thom TT, Kien ND. Free vibration analysis of 2-D FGM beams in thermal environment based on a new third-order shear deformation theory. Vietnam Journal of Mechanics. 2018;40(2):121-40.## [37] Khor K, Gu Y. Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings. Materials Science and Engineering: A. 2000;277(1-2):64-76.## [38] Seifried S, Winterer M, Hahn H. Nanocrystalline gradient films through chemical vapor synthesis. Scripta materialia. 2001;44(8-9):2165-8.## [39] Watanabe Y, Eryu H, Matsuura K. Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique. Acta Materialia. 2001;49(5):775-83.## [40] Song C, Xu Z, Li J. Structure of in situ Al/Si functionally graded materials by electromagnetic separation method. Materials & design. 2007;28(3):1012-5.## [41] Peng X, Yan M, Shi W. A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field. Scripta materialia. 2007;56(10):907-9.## [42] Zhu J, Lai Z, Yin Z, Jeon J, Lee S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Materials chemistry and physics. 2001;68(1-3):130-5.## [43] Rezaei A, Saidi A. Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Composites Part B: Engineering. 2016;91:361-70.## [44] Boutahar L, Benamar R. A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations. Ain Shams Engineering Journal. 2016;7(1):313-33.## [45] Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology. 2014;32(1):111-20.## [46] Ebrahimi F, Mokhtari M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2015;37(4):1435-44.## [47] Wattanasakulpong N, Chaikittiratana A. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica. 2015;50(5):1331-42.## [48] Ait Atmane H, Tounsi A, Bernard F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. International Journal of Mechanics and Materials in Design. 2017;13(1):71-84.## [49] Ebrahimi F, Zia M. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronautica. 2015;116:117-25.## [50] Ebrahimi F, Salari E. Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Composites Part B: Engineering. 2015;78:272-90.## [51] Ebrahimi F, Jafari A. Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory. Struct Eng Mech. 2016;59(2):343-71.## [52] Bert CW, Malik M. Differential quadrature method in computational mechanics: a review. 1996.## [53] Malekzadeh P, Heydarpour Y. Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Composite Structures. 2012;94(9):2971-81.## [54] Liang X, Wang Z, Wang L, Liu G. Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation. Journal of Sound and Vibration. 2014;333(12):2649-63.## [55] Farid M, Zahedinejad P, Malekzadeh P. Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Materials & Design. 2010;31(1):2-13.## [56] Zahedinejad P. Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment. International Journal of Structural Stability and Dynamics. 2016;16(07):1550029.## [57] Reddy JN. A simple higher-order theory for laminated composite plates. 1984.## [58] Kim Y-W. Temperature dependent vibration analysis of functionally graded rectangular plates. journal of sound and vibration. 2005;284(3-5):531-49.## [59] Ebrahimi F, Jafari A. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering. 2016;2016.## | ||
آمار تعداد مشاهده مقاله: 217 تعداد دریافت فایل اصل مقاله: 254 |