تعداد نشریات | 36 |
تعداد شمارهها | 1,208 |
تعداد مقالات | 8,730 |
تعداد مشاهده مقاله | 7,236,403 |
تعداد دریافت فایل اصل مقاله | 4,225,003 |
بررسی پاسخ غیرخطی گذرا صفحات فلزکامپوزیت تحت بارگذاری فشار یکنواخت وابسته به زمان | ||
مکانیک هوافضا | ||
مقاله 8، دوره 18، شماره 3 - شماره پیاپی 69، مهر 1401، صفحه 109-125 اصل مقاله (1.67 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
علی کیانی1؛ روح اله حسینی* 2؛ حسین خدارحمی3 | ||
1دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران | ||
2نویسنده مسئول: استادیار، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران | ||
3استاد، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران | ||
تاریخ دریافت: 10 آبان 1400، تاریخ بازنگری: 18 دی 1400، تاریخ پذیرش: 25 دی 1400 | ||
چکیده | ||
چندلایههای فلز کامپوزیتی در بسیاری از کاربردها از هواپیماها، زیردریاییها و کشتیها گرفته تا مخازن تحتفشار و قطعات خودرو مورداستفاده قرار میگیرند. در این مطالعه به بررسی تحلیل تئوری و عددی چندلایههای فلز-کامپوزیت تحت بارگذاری فشار یکنواخت وابسته به زمان پرداختهشده است. بدین منظور، چندلایه فلز کامپوزیت بر اساس نظریه تغییر شکل برشی مرتبه بالای ردی مدل شده و اثرات غیرخطی هندسی وون کارمن در استخراج معادلات حرکت گنجاندهشده است. فرض شده است که چندلایه فلز کامپوزیتی بر بستر پاسترناک قرار دارد و شرایط مرزی در تمامی لبههای ورق بهصورت تکیهگاه ساده در نظر گرفتهشده است. سپس معادلات مشتقات جزئی غیرخطی حرکت، با استفاده از روش گالرکین جداسازی شده و نهایتاً با استفاده از روش رانگ کوتا حلشدهاند. نتایج تحلیل تئوری انجامشده با نتایج ارائهشده در مطالعات پیشین مقایسه گردیده و تطابق خوبی مشاهدهشده است. همچنین بهمنظور بررسی پارامترهای اثرگذار، اثر نسبت ابعادی، بستر پاسترناک، زمان بارگذاری و نوع پالسهای فشاری بر روی پاسخ دینامیکی ورق موردبررسی قرارگرفته است. مطابق با نتایج بهدستآمده، با کاهش زمان فاز مثبت بارگذاری و افزایش پارامتر شکل موج، اثر فاز منفی بارگذاری تقویتشده و منجر به افزایش جابجایی بیبعد در مرکز ورق میگردد. علاوه بر این، مشخص گردید که پارامتر سختی خطی، در مقایسه با پارامتر لایه برشی اثر کمتری بر پاسخ زمانی دارد. | ||
کلیدواژهها | ||
پاسخ غیرخطی؛ چندلایهی کامپوزیتی؛ بارگذاری یکنواخت وابسته به زمان؛ روش گالرکین؛ روش رانگ کوتا | ||
عنوان مقاله [English] | ||
Investigation of Transient Nonlinear Response of Fiber Metal Laminates (FML’s) under Uniform Time-dependent Pressure Loading | ||
نویسندگان [English] | ||
Ali Kiani1؛ Rouhollah Hosseini2؛ Hossein Khodarahmi3 | ||
1Ph.D. Student, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran | ||
2Corresponding author: Assistant Professor, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran | ||
3Professor, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran | ||
چکیده [English] | ||
Fiber Metal Laminates (FML’s) are being used in many applications ranging from aircraft, submarines and ships to pressure vessels and automotive parts. In this study, the theoretical and numerical analysis of fiber metal laminates (FML’s) subjected to time-dependent uniform pressure load have been investigated. For this purpose, the plate is modeled based on the Reddy’s higher order shear deformation plate theory and the effects of the von Kármán geometric nonlinearity are included in the derivation of the motion equations. The FML is assumed to rest on the Pasternak foundation and simply supported boundary conditions are considered for all edges of the plate. Then, Nonlinear Partial differential Equations (PDEs) of motion are separated by using of the Galerkin method and finally solved using the Runge Kutta method. The results of conducted theoretical analyses compared with the presented results in the literature and good agreement is found. Also, in order to investigate the effective parameters, the effect of aspect ratio, Pasternak foundation and type of pressure pulses on the dynamic response of the plate have been examined. According to the obtained results, by reducing the positive phase time of loading and increasing the waveform parameter, the effect of the negative phase of loading is amplified and leads to an increase in dimensionless displacement in the center of the plate. Also, it was realized that the linear stiffness parameter in comparison with the shear layer parameter has less effect on the dynamic response. | ||
کلیدواژهها [English] | ||
Nonlinear response, Laminated composite, Time-dependent uniform pressure load, Galerkin method, Runge Kutta method | ||
مراجع | ||
[1] Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research. 2006;9(3):247-56.## [2] Safri S, Sultan M, Yidris N, Mustapha F. Low velocity and high velocity impact test on composite materials–a review. Int J Eng Sci. 2014;3(9):50-60.## [3] Sadighi M, Alderliesten R, Benedictus R. Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering. 2012;49:77-90.## [4] Sinmazçelik T, Avcu E, Bora MÖ, Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design. 2011;32(7):3671-85.## [5] Vlot A, Vogelesang L, De Vries T. Towards application of fibre metal laminates in large aircraft. Aircraft Engineering and Aerospace Technology. 1999.## [6] De Vries TJ. Blunt and sharp notch behaviour of Glare laminates. 2001.## [7] Vermeeren C. An historic overview of the development of fibre metal laminates. Applied Composite Materials. 2003;10(4):189-205.## [8] Vlot A. Glare: history of the development of a new aircraft material: Springer Science & Business Media; 2007.## [9] Hagenbeek M. Characterisation of fibre metal laminates under thermomechanical loadings. 2005.## [10] Botelho E, Campos A, De Barros E, Pardini L, Rezende M. Damping behavior of continuous fiber/metal composite materials by the free vibration method. Composites part B: Engineering. 2005;37(2-3):255-63.## [11] Malik M, Bert CW. Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. International Journal of Solids and Structures. 1998;35(3-4):299-318.## [12] Ganapathi M, Makhecha D. Free vibration analysis of multi-layered composite laminates based on an accurate higher-order theory. Composites Part B: Engineering. 2001;32(6):535-43.## [13] Akhras G, Li W. Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation. Composites Part B: Engineering. 2005;36(6-7):496-503.## [14] Ahmadi M, Ansari R, Rouhi H. Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E: Low-Dimensional Systems and Nanostructures. 2017;93:17-25.## [15] Andrianov I, Danishevs’Kyy V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations. Journal of Sound and Vibration. 2005;283(3-5):561-71.## [16] Li J-J, Cheng C-J. Differential quadrature method for nonlinear vibration of orthotropic plates with finite deformation and transverse shear effect. Journal of sound and vibration. 2005;281(1-2):295-309.## [17] Shooshtari A, Razavi S. A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates. Composite Structures. 2010;92(11):2663-75.## [18] Wu W, Shu C, Wang C. Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates. Journal of Sound and Vibration. 2008;317(3-5):955-74.## [19] Kumari E, Singha M. Nonlinear response of laminated panels under blast load. Procedia engineering. 2017;173:539-46.## [20] Dinh Duc N, Tuan ND, Tran P, Quan TQ. Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads. Mechanics of Advanced Materials and Structures. 2017;24(4):318-29.## [21] Jomeh-Montazeri R, Shahabian-Moghadam F, Geometrical nonlinear dynamic analysis of cylindrical FML shells under explosive loading. International Conference Data Engineering. Tabriz, Civil Engineering, Architecture & Urban Planning, 2018. (In Persian). ## [22] Reddy JN. A general non-linear third-order theory of plates with moderate thickness. International Journal of Non-Linear Mechanics. 1990;25(6):677-86.## [23] Ghasemi A, Taheri-Behrooz F, Farahani S, Mohandes M. Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions. Journal of Vibration and Control. 2016;22(3):799-811.## [24] Mohandes M, Ghasemi AR. Finite strain analysis of nonlinear vibrations of symmetric laminated composite Timoshenko beams using generalized differential quadrature method. Journal of Vibration and Control. 2016;22(4):940-54.## [25] Ghasemi A, Mohandes M. Nonlinear free vibration of laminated composite Euler-Bernoulli beams based on finite strain using generalized differential quadrature method. Mechanics of Advanced Materials and Structures. 2017;24(11):917-23.## [26] Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis: CRC press; 2003.## [27] Hosseini M, Bahreman M, Jamalpoor A. Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system. Acta Mechanica. 2016;227(6):1621-43.## [28] Dobyns A. Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AiAA Journal. 1981;19(5):642-50.## [29] Liu C, Ke L-L, Wang Y-S, Yang J. Nonlinear vibration of nonlocal piezoelectric nanoplates. International Journal of Structural Stability and Dynamics. 2015;15(08):1540013.## [30] Razavi S, Shooshtari A. Nonlinear free vibration of magneto-electro-elastic rectangular plates. Composite Structures. 2015;119:377-84.## [31] Shabanpour S, Razavi S, Shooshtari A. Nonlinear vibration analysis of laminated magneto-electro-elastic rectangular plate based on third-order shear deformation theory. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019;43(1):211-23.## [32] Hashemi SH, Arsanjani M. Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. International Journal of Solids and Structures. 2005;42(3-4):819-53.## [33] Hosseini-Hashemi S, Fadaee M, Taher HRD. Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Applied Mathematical Modelling. 2011;35(2):708-27.## [34] Leissa AW. The free vibration of rectangular plates. Journal of sound and vibration. 1973;31(3):257-93.## [35] Malik M, Bert CW. Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. International Journal of Solids and Structures. 1998;35(3-4):299-318.## [36] Upadhyay A, Pandey R, Shukla K. Nonlinear dynamic response of laminated composite plates subjected to pulse loading. Communications in Nonlinear Science and Numerical Simulation. 2011;16(11):4530-44.## [37] Lee S, Reddy J, Rostam-Abadi F. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elements in Analysis and Design. 2004;40(5-6):463-83.## | ||
آمار تعداد مشاهده مقاله: 154 تعداد دریافت فایل اصل مقاله: 156 |