تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,992 |
تعداد مشاهده مقاله | 7,843,212 |
تعداد دریافت فایل اصل مقاله | 4,704,948 |
بررسی ویژگی های ترک خوردگی در دمای کم مخلوط های آسفالتی حاوی خرده آسفالت بازیافتی و افزودنی ساسوبیت با استفاده از آزمایش خمش نیمدایره | ||
علوم و فنون سازندگی | ||
دوره 3، شماره 1 - شماره پیاپی 7، فروردین 1401، صفحه 11-26 اصل مقاله (982.75 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
امین تناکی زاده* 1؛ مهدی خرقانی2 | ||
1دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
2پژوهشکده سازندگی خاتم الانبیاء | ||
تاریخ دریافت: 29 مرداد 1401، تاریخ پذیرش: 29 مرداد 1401 | ||
چکیده | ||
ترک خوردگی دمای کم یکی از خرابی های اصلی رویه های آسفالتی است که بهعنوان یک شاخص عملکردی مهم در روش طراحی مکانستیک - تجربی در نظر گرفته میشود. سختی شکست و انرژی شکست پارامترهای مهمی برای بررسی ترک خوردگی دمای کم مخلوط آسفالتی هستند. هدف از این مطالعه بررسی پارامترهای شکست دمای کم مخلوط های آسفالتی حاوی روسازی آسفالتی بازیافتی و افزودنی آسفالت گرم ساسوبیت با استفاده از آزمایش خمش نیمدایره است. برای این منظور آزمایش خمش نیمدایره در دمای صفر درجه سانتیگراد، تحت حالت تغییر مکان خطی کنترلشده صورت گرفت. هشت مخلوط بتن آسفالتی روسازی ممتاز شامل مخلوط آسفالتی داغ، بتن آسفالتی اصلاحشده با ساسوبیت، مخلوط آسفالتی داغ حاوی خرده آسفالت بازیافتی و مخلوط آسفالتی گرم حاوی خرده آسفالت بازیافتی با دو اندازه سنگدانه بیشینه اسمی 5/9 و ۱۹ میلیمتر تهیه شدند. مخلوط های آسفالتی بازیافتی گسیختگی شکننده و ناگهانی نشان دادند درحالیکه برای مخلوط های آسفالتی گرم و داغ گسیختگی شکل پذیرتر بود. سختی شکست مخلوط های بازیافتی بزرگتر از دیگر مخلوط ها بود (حدود ۱۰۰ درصد مخلوط های بدون مصالح بازیافتی). بر اساس پارامتر انرژی شکست، مخلوط های آسفالتی بازیافتی، افزون بر مزایای اقتصادی و زیستمحیطی، عملکرد ترک خوردگی دمای کم بهتری داشتند. مخلوطهای آسفالتی گرم حاوی خرده آسفالت درشت دانه، افزایش حدود ۲۲ درصدی در انرژی شکست نشان دادند که پسازآن مخلوط آسفالتی گرم حاوی خرده آسفالت ریزدانه با حدود ۱۵ درصد و مخلوط آسفالتی داغ حاوی خرده آسفالت درشت دانه با حدود ۱۲ درصد قرار داشتند. شدت ترک خوردگی مخلوط های بازیافتی کمتر (بین ۲۵ تا ۸۴ درصد مخلوط های بدون خرده آسفالت متناظر) از مخلوط های بدون خرده آسفالت بود. | ||
کلیدواژهها | ||
خرده آسفالت بازیافتی؛ خمش نیمدایره؛ ساسوبیت؛ انرژی شکست؛ سختی شکست | ||
عنوان مقاله [English] | ||
Evaluation of Low-Temperature Cracking Properties of Asphalt Mixtures Containing RAP and Sasobit Using the SCB Test | ||
نویسندگان [English] | ||
Amin Tanakizadeh1؛ mehdi kharghani2 | ||
1Faculty of Civil Engineering, Semnan University, Semnan, Iran | ||
2Construction Research Institute | ||
چکیده [English] | ||
Low-temperature cracking is one of the major failures of asphalt surfaces, and is considered as a performance indicator in the mechanistic-empirical design method. Fracture toughness and fracture energy are important parameters for investigating the low-temperature cracking of asphalt concrete. The purpose of this study is to explore the low-temperature fracture parameters of asphalt mixtures containing the recycled asphalt pavement (RAP) and the warm mix asphalt (WMA) additive namely, Sasobit using the semicircular bending (SCB) test. For this purpose, the SCB test is carried out at 0 °C under the load line displacement (LLD) controlled mode. The eight superpave-designed asphalt concretes including hot mix asphalt (HMA), Sasobit-modified asphalt concrete (WMA), HMA containing RAP (HRAP), and WMA containing RAP (WRAP), were prepared with two nominal maximum aggregate sizes of 9.5 and 19 millimeters. The recycled asphalt mixtures (both HRAP and WRAP) showed a sudden and brittle failure, while in the case of HMA and WMA mixtures, the failure was more ductile. The fracture toughness of the RAP mixtures was higher than the other ones (about 100% of mixtures without RAP). Based on the fracture energy parameter, the recycled asphalt mixtures (HRAP and WRAP) had a better low-temperature cracking performance, in addition to the environmental and economic benefits. The coarse-grained WRAP mixtures showed an increase of about 22% in the fracture energy, followed by the fine-grained WRAP mixture (about 15%), and the coarse-grained HRAP mixture (about 12%). The cracking severity of the RAP mixtures was lower than the RAP-free mixtures (between 25% to 84% of the corresponding RAP-free mixtures) | ||
کلیدواژهها [English] | ||
Reclaimed Asphalt Pavement, Semi-Circular Bending, Sasobit, Fracture Energy, Fracture Toughness | ||
مراجع | ||
P. Teymourpour, “Using Mastic Characterization to Predict Asphalt Mixture Low-temperature Cracking Behavior,” Ph.D. Thesis, University of Wisconsin, Madison, 2015.## R.L. Krans, F. Tolman and M.F.C. Van de Ven, “Semi-circular bending test: a practical crack growth test using asphalt concrete cores,” RILEM proceedings (pp. 123-132), 1996.## F. Hong and J.A. Prozzi, “Evaluation of recycled asphalt pavement using economic, environmental, and energy metrics based on long-term pavement performance sections,” Road Materials and Pavement Design, vol. 19(8) pp. 1816-1831, 2018.## D.J. Mensching, “Developing index parameters for cracking in asphalt pavements through black space and viscoelastic continuum damage principles,” 2015.## R. Shrestha, “The Effects of Reclaimed Asphalt Pavement (RAP) on the Laboratory Performances of Hot Mix Asphalts,” Ph.D. Thesis, 2009.## Y. Zhu, Y. Li, C. Si, X. Shi, Y. Qiao, and H. Li, “Laboratory Evaluation on Performance of Fiber-Modified Asphalt Mixtures Containing High Percentage of RAP,” Advances in Civil Engineering, 2020.## A.C. Falchetto, K.H. Moon, and D.H. Kim, “Evaluation of recycled asphalt mixture at low temperature using different analytical solutions,” Canadian Journal of Civil Engineering, vol. 47(7) pp. 801-811, 2020.## S. Raschia, A. Graziani, A. Carter, and D. Perraton, “Laboratory mechanical characterisation of cold recycled mixtures produced with different RAP sources,” Road Materials and Pavement Design, vol. 20(sup1) pp. S233-S246, 2019.## J. Li, F. Ni, and Q. Lu, “Experimental investigation into the multiscale performance of asphalt mixtures with high contents of reclaimed asphalt pavement,” Journal of Materials in Civil Engineering, vol. 30(6) p. 04018105, 2018.## L. Gao, H. Li, J. Xie, Z. Yu, and S. Charmot, “Evaluation of pavement performance for reclaimed asphalt materials in different layers,” Construction and Building Materials, vol. 159 pp. 561-566, 2018.## X. Sanchez and S.L. Tighe, “Steps towards the detection of reclaimed asphalt pavement in superpave mixtures,” Road Materials and Pavement Design, vol. 20(5) pp. 1201-1214, 2019.## Z. Zhou, X. Gu, F. Ni, Q. Li, and X. Ma, “Cracking resistance characterization of asphalt concrete containing reclaimed asphalt pavement at intermediate temperatures,” Transportation Research Record, vol. 2633(1) pp. 46-57, 2017. ## D. Singh, S.F. Chitragar, and P.K. Ashish, “Comparison of moisture and fracture damage resistance of hot and warm asphalt mixes containing reclaimed pavement materials,” Construction and Building Materials, vol. 157 pp. 1145-1153, 2017.## A.Z. Siavashani, “Development of indirect ring tension test for fracture characterization of asphalt mixtures,” University of Kentucky, 2014.## X. Li and M. Marasteanu, “Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi circular bend test,”Association of Asphalt Paving Technologists-Proceedings of the Technology Sessions, AAPT 2004 (pp. 401-426), 2004.## S. Pirmohammad, B. Amani, and Y.M Shokorlou, “The effect of basalt fibres on fracture toughness of asphalt mixture,” Fatigue & Fracture of Engineering Materials & Structures, 2020.## S. Pirmohammad, Y.M. Shokorlou, and B. Amani, “Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers,” Engineering Fracture Mechanics, vol. 226 p.106875, 2020.##M.R.M. Aliha, A. Razmi, and A. Mansourian, “The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials,” Engineering Fracture Mechanics, vol. 182 pp. 322-336, 2017.## M.R. Eghbali, M.F. Tafti, M.R.M. Aliha, and H. Motamedi, “The effect of ENDB specimen geometry on mode I fracture toughness and fracture energy of HMA and SMA mixtures at low temperatures,” Engineering Fracture Mechanics, vol. 216 p.106496, 2019.## S. Saadeh and O. Eljairi, “Comparison of Fracture Properties of Asphalt Concrete in Semicircular Bend Test Using Noncontact Camera and Crosshead Movement,” Journal of Materials in Civil Engineering, vol. 30(6) p.04018078, 2018.## A.C. Falchetto, K.H. Moon, D. Wang, C. Riccardi, and M.P. Wistuba, “Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations,” Road Materials and Pavement Design, vol. 19(3) pp. 591-604, 2018.## P.H. Pour, M.R.M. Aliha, and M.R. Keymanesh, “Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions,” Engineering Fracture Mechanics, vol. 190 pp. 245-258, 2018.##E.Z. Teshale, D. Rettner, A. Hartleib, and D. Kriesel, “Application of laboratory asphalt cracking tests to cold in-place recycled mixtures,” Road Materials and Pavement Design, vol. 18(sup4) pp. 79-97, 2017.## S.R. Omranian, M.O. Hamzah, and M.R.M. Hasan, “Introducing New Indicators to Evaluate Fracture Properties of Asphalt Mixtures Using Semicircular Bending Test,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 43(3) pp. 541-549, 2019.## F. Kaseer, F. Yin, E. Arámbula-Mercado, A.E. Martin, J.S. Daniel, and S. Salari, “Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test,” Construction and Building Materials, vol. 167 pp. 286-298, 2018.## Y. Zhu, E.V. Dave, R. Rahbar-Rastegar, J.S. Daniel, and A. Zofka, “Comprehensive evaluation of low-temperature fracture indices for asphalt mixtures,” Road Materials and Pavement Design, vol. 18(sup4) pp. 467-490, 2017.## M.R.M. Aliha, H. Ziari, B. Mojaradi, and M.J. Sarbijan, “Heterogeneity effects on mixed‐mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen,” Fatigue & Fracture of Engineering Materials & Structures, vol. 43(3) pp. 586-604, 2020.## S.C. Somé, A. Feeser, and A. Pavoine, “Numerical and experimental investigation of mode I cracking of asphalt concrete using semi-circular bending test,” Construction and Building Materials, vol. 169 pp. 34-46, 2018.## AASHTO M320, “Standard Method of Test for Performance Graded Asphalt Binder,” American Association of State Highway and Transportation Officials, Washington DC, 2016.## Sasolwax, “Asphalt Additives,” http://www.sasolwax.com/products-applications/fischer-tropsch-wax0/asphalt-additives/, 2020.## ASTM D2172/D2172M-17, “Standard test methods for quantitative extraction of asphalt binder from asphalt mixtures,” ASTM, 2017.## ASTM D1856, “Standard Test Method for Recovery of Asphalt from Solution by Abson Method,” ASTM, 2015.## AASHTO R35, “Standard practice for Superpave volumetric design for asphalt mixtures,” American Association of State Highway and Transportation Officials, Washington DC, 2015.## AASHTO M323, “Standard specification for superpave volumetric mix design,” American Association of State Highway and Transportation Officials, Washington, DC, 2013.## AASHTO TP105-13, “Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB),” American Association of State Highway and Transportation Officials, Washington DC, 2015.## AASHTO T312, “Standard Method of Test for Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor,” American Association of State Highway and Transportation Officials, Washington DC, 2015.##Y. Yan, R. Roque, D. Hernando, and G. Lopp, “Development of a new methodology to effectively predict the fracture properties of RAP mixtures,” Road Materials and Pavement Design, vol. 18(sup4) pp. 372-387, 2017.## D.X. Lu, H.H. Bui, and M. Saleh, “Effects of specimen size and loading conditions on the fracture behavior of asphalt concretes in the SCB test,” Engineering Fracture Mechanics, vol. 242, 2021.
| ||
آمار تعداد مشاهده مقاله: 222 تعداد دریافت فایل اصل مقاله: 180 |