تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,914 |
تعداد دریافت فایل اصل مقاله | 4,706,563 |
بررسی انتشار امواج لمب در ورقهای لایهای الیاف-فلز سفتی متغیر با استفاده از روش اجزاء محدود | ||
مکانیک هوافضا | ||
مقاله 6، دوره 19، شماره 1 - شماره پیاپی 71، خرداد 1402، صفحه 81-92 اصل مقاله (2.52 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
هادی قشوچی برق* 1؛ ملینا حسنی2 | ||
1نویسنده مسئول: استادیار، گروه مهندسی صنایع، مکانیک و هوافضا، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، ایران | ||
2کارشناسی، گروه مهندسی صنایع، مکانیک و هوافضا، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، ایران | ||
تاریخ دریافت: 11 شهریور 1401، تاریخ بازنگری: 16 مهر 1401، تاریخ پذیرش: 30 مهر 1401 | ||
چکیده | ||
امواج لمب از امواج هدایتشده مکانیکی میباشند که در ورقها و پوستهها انتشار مییابند و سرعت آنها وابسته به فرکانس میباشد. امروزه محققان از این امواج برای شناسایی نقص در سازهها بهره میگیرند. این امر به دلیل خاصیت امواج لمب میباشد که میتوانند در سراسر سازه انتشار یابند و در صورت وجود نقص بهسرعت تحت تأثیر قرار گیرند. استفاده از این روش در مقابل روشهای سنتی با توجه به پیچیده، پرهزینه و زمانبر بودنشان، مطلوب میباشد. بهعنوان نوآوری در این پژوهش، اثر انتشار امواج لمب در ورقهای لایهای الیاف-فلز سفتی متغیر متقارن بررسیشده است و جهت این امر از روش اجزاء محدود استفادهشده است. در این تحلیل در لایههای کامپوزیتی بهجای الیاف مستقیم از الیاف منحنی شـکل استفادهشده و اثر تعداد لایهها، ابعاد ورق و شرایط مرزی بر انتشار امواج فوق بررسیشده است. همچنین جهت بررسی صحت مدل، سه فرکانس اول سازه با چند مرجع مختلف مورد مقایسه قرارگرفته است. نتایج بهدستآمده نشان میدهد، امواج لمب در طول ورق انتشاریافته و با برخورد به مرزهای ورق یا نقص در سازه منعکس میگردند و حالت انتشار یکنواخت خود را از دست میدهند. بر اساس این بررسی میتوان از این روش در شناسایی وجود نقص در سازههای لایهای الیاف-فلز سفتی متغیر بهره برد. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
امواج لمب؛ ورق های لایه ای الیاف-فلز؛ ورق های لایه ای سفتی متغیر؛ روش اجزاء محدود | ||
عنوان مقاله [English] | ||
Investigation of Lamb Waves Propagation in Variable Stiffness Fiber Metal Laminated Plates Using Finite Element Method | ||
نویسندگان [English] | ||
Hadi Ghashochi-Bargh1؛ Melina Hasani2 | ||
1Corresponding author: Assistant Professor, Department of Industrial, Mechanical, and Aerospace Engineering, Buein Zahra Technical University, Buein Zahra, Iran | ||
2B.Sc., Department of Industrial, Mechanical, and Aerospace Engineering, Buein Zahra Technical University, Buein Zahra, Iran | ||
چکیده [English] | ||
Lamb waves are mechanically guided waves that propagate through plates and shells, and their speed depends on the frequency. Nowadays, researchers use these waves to detect defects in structures. This is due to the properties of Lamb waves that can propagate in the whole structure, and are quickly affected if there is a defect. Using this method instead of traditional methods due to their complexity, cost and time are desired. As an innovation in this research, the effects of lamb wave propagations in symmetrically variable stiffness fiber-metal laminated plates are investigated and for this purpose, the finite element method is used. In this analysis, curvilinear fibers are used in the composite layers instead of the straight fibers, and the effect of the number of layers, plate dimensions, and boundary conditions on the propagation of the mentioned waves are investigated. Also, to check the validity, the first three frequencies of the structure are compared with several different references. The obtained results show that the Lamb waves are propagated along the length of the plate and are reflected by hitting the boundaries of the plate or defect in the structure and lose their uniform propagation state. Based on this investigation, this method can be used to detect the defect in variable stiffness fiber-metal laminated structures. | ||
کلیدواژهها [English] | ||
Lamb waves, Fiber-metal laminated plates, Variable stiffness laminated plates, Finite element method | ||
مراجع | ||
[1] Al-Nassar Y, Datta S, Shah A. Scattering of Lamb waves by a normal rectangular strip weldment. Ultrasonics. 1991;29(2):125-132.## [2] Alleyne DN, Cawley P. The interaction of Lamb waves with defects. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 1992;39(3):381-397.## [3] Kessler SS, Spearing SM, Soutis C. Damage detection in composite materials using Lamb wave methods. Smart materials and structures. 2002;11(2): 269-278.## [4] Su Z, Ye L. Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm: Part I-methodology and database development. Journal of intelligent material systems and structures. 2005;16(2):97-111.## [5] Su Z, Ye L. Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Composite Structures. 2004;66(1-4):627-637.## [6] Yashiro S, Takatsubo J, Toyama, N. An NDT technique for composite structures using visualized Lamb-wave propagation. Composites Science and Technology. 2007;67(15-16):3202-3208.## [7] Rhee SH, Lee JK, Lee JJ. The group velocity variation of Lamb wave in fiber reinforced composite plate. Ultrasonics. 2007;47(1-4):55-63.## [8] Ramadas C, Balasubramaniam K, Joshi M, Krishnamurthy CV. Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Materials and Structures. 2010;19(6): 065009.## [9] Ben BS, Ben BA, Vikram KA, Yang SH. Damage identification in composite materials using ultrasonic based Lamb wave method. Measurement. 2013;46(2):904-912.## [10] Su C, Jiang M, Liang J, Tian A, Sun L, Zhang L, Zhang F, Sui Q. Damage identification in composites based on Hilbert energy spectrum and Lamb wave tomography algorithm. IEEE Sensors Journal. 2019;19(23):11562-11572.## [11] Huo H, He J, Guan X. A Bayesian fusion method for composite damage identification using Lamb wave. Structural Health Monitoring. 2020; 1475921720945000.## [12] Ezzin H, Wang B, Qian Z, Arefi M. Multiple crossing points of Lamb wave propagating in a magneto-electro-elastic composite plate. Archive of Applied Mechanics. 2021;91(6):2781-2793.## [13] Ebrahiminejad A, Mardanshahi A, Kazemirad S. Nondestructive evaluation of coated structures using Lamb wave propagation. Applied Acoustics. 2022;185:108378.## [14] Najd J, Zappino E, Carrera E, Harizi W, Aboura Z. A Variable Kinematic Multifield Model for the Lamb Wave Propagation Analysis in Smart Panels. Sensors. 2022;22(16):6168.## [15] Mardanshahi A, Shokrieh MM, Kazemirad S. Simulated Lamb wave propagation method for nondestructive monitoring of matrix cracking in laminated composites. Structural Health Monitoring. 2022;21(2):695-709.## [16] Khalafi V, Fazilati J. Free vibration analysis of variable stiffness composite laminated thin skew plates using IGA. Journal of Theoretical and Applied Vibration and Acoustics. 2018;4(2):171-188.## [17] ABAQUS (2021) ABAQUS analysis user’s manual. Version 2021. Dassault Systemes Simulia Corp.## [18] Ghashochi.Bargh H, Sadr MH. PSO algorithm for fundamental frequency optimization of fiber metal laminated panels. Structural Engineering and Mechanics, 2013;47(5):713-727.## [19] Chen J, Dawe DJ. Linear transient analysis of rectangular laminated plates by a finite strip-mode superposition method. Composite structures. 1996;35(2):213-228.## [20] Rice RC. Metallic materials properties development and standardization ( MMPDS). National Technical Information Service. 2003.## [21] Khalafi V, Fazilati J. Supersonic flutter analysis of curvilinear fiber variable stiffness composite laminated plates. 5th International Conference on Composites: Characterization, Fabrication and Application, CCFA-5. 2016.## [22] Akhavan H, Ribeiro P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Composite Structures. 2011;93(11):3040-3047.## [23] Han S, Palazotto AN, Leakeas CL. Finite-element analysis of Lamb wave propagation in a thin aluminum plate. Journal of Aerospace Engineering. 2009;22(2):185-197.## | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 188 |