تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,992 |
تعداد مشاهده مقاله | 7,843,201 |
تعداد دریافت فایل اصل مقاله | 4,704,933 |
دستهبندی دادگان سونار با استفاده از شبکههای عصبی تعلیم یافته با الگوریتمهای سنجاقک بهبود یافته و پروانه - شمع | ||
پدافند الکترونیکی و سایبری | ||
دوره 10، شماره 3 - شماره پیاپی 39، دی 1401، صفحه 21-31 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سید فرید موسوی پور1؛ سید محمدرضا موسوی* 2 | ||
1دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
2استاد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
تاریخ دریافت: 24 شهریور 1400، تاریخ بازنگری: 21 آذر 1400، تاریخ پذیرش: 18 مرداد 1401 | ||
چکیده | ||
یکی از زمینههای بسیار پیچیده در تحقیقات حوزه سونار، دستهبندی و تشخیص اکوی اهداف واقعی از کاذب در این حوزه میباشد. شبکههای عصبی پرسپترون چندلایه (MLP NN ) پرکاربردترین و سریعترین دستهبندی کنندهها در این حوزه بوده و آموزش آنان در سالهای اخیر بسیار مورد توجه قرار گرفته است. الگوریتمهای سنتی آموزش شبکههای عصبی، شامل روشهای بازگشتی، گرادیان نزولی و نیوتن و ...، دارای نقصهای عدیدهای همچون دقت نامناسب، گیرافتادن در کمینههای محلی و سرعت همگرایی پایین است. اخیراً استفاده ترکیبی روشهای فراابتکاری تعلیم شبکههای عصبی به منظور غلبه بر این نقایص پیشنهاد شدهاند. در این مقاله، از دو الگوریتم جدید فراابتکاری برپایه تقلید از حیوانات سنجاقک و پروانه – شمع به منظور بهبود در آموزش شبکههای عصبی استفاده شده است. نتایج شبیهسازی روی دادههای پایگاه دادههای سجنوفسکی و Iris نشان میدهد که شبکه عصبی آموزش یافته شده با روش پروانه - شمع، توانسته است دقت دستهبندی اهداف واقعی سوناری را تا 88 درصد افزایش دهد که 30 درصد از الگوریتمهای قبلی تعلیم بیشتر است. | ||
کلیدواژهها | ||
دستهبندی دادگان؛ اهداف سوناری؛ شبکه عصبی پرسپترون چندلایه؛ الگوریتمهای فراابتکاری | ||
عنوان مقاله [English] | ||
Sonar Dataset Classification using Multi-Layer Perceptron Neural Network Based on Dragonfly and Moth Algorithms | ||
نویسندگان [English] | ||
Seyed Farid Mousavipour1؛ Seyed Mohammad Reza Mousavi2 | ||
1PhD student, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
2Professor, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
One of the most complex areas of sonar research is the classification and recognition of the real target from the liar. Multi-layer perceptron neural networks (NNs) are the most popular and fastest classifier in this area. Train of these networks in remarkable in recent years. Classical algorithms for the training of NNs include: recursive methods, gradient descent, and Newton, etc. Some disadvantages of these methods are improper accuracy, trapping in local optimum, and low convergence rate. In recent years, metaheuristic algorithms combined for the training of NNs are proposed for dominating these defects. In this paper, two new meta-heuristic algorithms are used based on mimicking from animals (dragonfly and moth) for the training of NNs. Simulated results on Iris and Sejnowski datasets are shown Moth–Flame classification rate is 88% and has 30% improvement rather than old methods. | ||
کلیدواژهها [English] | ||
Data classification, Sonar targets, perceptron neural networks, Meta-heuristic algorithms | ||
مراجع | ||
[1] U. Robert, “Principle of Underwater Sound,” 3rd Edition, New York, Prentice Hall, 2002. [2] M. R. Mosavi, M. Khishe, & M. Aghababaie, “Modeling and Mitigation of Active Sonar Clutter,” Noshahr University of Marine Science and Technology, 2015. (In Persian( [3] M. Fialkowski & C. Gauss, “Methods for Identifying and Controlling Sonar Clutter,” IEEE Journal of Oceanic Engineering, vol. 35, no. 2, pp. 125-138, April 2010. [4] C. A. Wilgenbusch, “Detection and Feature Extraction of Mine-like Objects from Sonar Signals,” Master’s Thesis, Naval Postgraduate School Monterey, 2001. [5] J. M. Benitez, J. L. Castro, & I. Requena, “Are Artificial Neural Networks Black Boxes?,” IEEE Transaction on Neural Networks, vol. 8, no. 5, pp. 1156–1164, 1997. [6] N. Karayiannis, “Reformulated Radial Basis Neural Networks Trained by Gradient Descent,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 657-671, 1999. [7] H. Holland, “Genetic Algorithms,” Scientific American, vol. 267, pp. 66-72, 1992. [8] R. C. Eberhart & J. Kennedy, “A New Optimizer using Particle Swarm Theory,” International Symposium on Micro Machine and Human Science, pp. 39-43, 1995. [9] E. Rashedi, H. Nezamabadi-pour, & S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information Sciences, vol. 179, pp. 2232–2248, 2009. [10] Y. Wang, L. Yuan, M. Khishe, A. Moridi, & F. Mohammadzade, “Training RBF NN Using Sine-Cosine Algorithm for Sonar Target Classification,” Archive of Acoustics, vol. 45, no. 4, pp. 753-764, 2020. [11] M. Khishe, M. R. Mosavi, & A. Moridi, “ Chaotic Fractal Walk Trainer for Sonar Dataset Classification using Multi-Layer Perceptron Neural Network and its Hardware Implementation,” Applied Acoustics, vol. 137, pp. 121-139, 2018. [12] M. Kave, M. Khishe, & M. R. Mosavi, “Design and Implementation of a Neighborhood Search Biogeography based Optimization Trainer for Classifying Sonar Dataset using Multilayer Perceptron Neural Network,” Analog Integrated Circuits and Signal Processing, vol. 100, no. 2, pp. 405-428, 2019. [13] S. Mirjalili, “Dragonfly Algorithm: A New Meta-heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems,” Neural Computing and Applications, vol. 27, no. 4, pp. 1053-1073, 2015. [14] S. Mirjalili, “Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm,” Knowledge-Based Systems, vol. 89, pp. 228-249, 2015. [15] R. P. Gorman & T. J. Sejnowski, “Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets,” Neural Networks, vol. 1, pp. 75-89, 1988. [16] http://archive.ics.uci.edu/ml/datasets. [17] S. Tamura & M. Tateishi, “Capability of Four-Layered Neural Network: Four Llayers versus Three,” IEEE Trans. Neural Netw. vol. 8, pp. 251-255, 1997. [18] K. Shibata & Y. Ikeda, “Effect of Number of Hidden Neurons on Learning in Large-scale Layered Neural Networks,” in Proceedings of the ICROS-SICE International Joint Conference, pp. 5008-5013, 2009. [19] D. Hunter, Y. Hao, M.S. Pukish, J. Kolbusz, & B.M. Wilamowski, “Selection of Proper Neural Network Sizes and Architectures - A Comparative Study,” IEEE Trans. Ind. Inform., vol. 8, pp. 228-240, 2012. [20] K. Gnana Sheela & S. N. Deepa, “ Review on Methods to Fix Number of Hidden Neurons in Neural Networks,” Mathematical Problems in Engineering, vol. 2013, pp. 1-11, 2013. [21] K. J. Gaston, J. Bennie, T. W. Davies, & J. Hopkins, “The Ecological Impacts of Night Time Light Pollution: a Mechanistic Appraisal,” Biological Reviews, vol. 88, pp. 912-927, 2013. [22] K. D. Frank, C. Rich, & T. Longcore, “Effects of Artificial Night Lighting on Moths,” Ecological Consequences of Artificial Night Lighting, pp. 305-344, 2006. [23] M. R. Mosavi, M. Khishe, A. Ghamgosar, & M. J. Ghalandari, “Classification of Sonar Data Set using the Gray Wolf Optimizer Algorithm,” Journal of Electronics Industries, vol. 7, no. 1, pp. 27-41, 2016. (In Persian) [24] S. García, D. Molina, M. Lozano, & F. Herrera, “A Study on the Use of Non-parametric Test for Analyzing the Evolutionary Algorithms’ Behaviour,” A Case Study on the CEC’2005 Special Session on Real Parameter Optimization. Journal of Heuristics, vol. 15, no. 6, pp. 617-644, 2009. [25] S. Mirjalili & A. Lewis, “S-Shaped Versus V-Shaped Transfer Functions for Binary Particle Swarm Optimization,” Swarm and Evolutionary Computation, vol. 9, pp. 1-14, 2013. [26] M. R. Mosavi, M. Khishe, A. Ghamgosar, & M. J. Ghalandari, “The Use of Radial Basis Function Networks Based on Leader Mass Gravitational Search Algorithm for Sonar Dataset Classification,” Journal Of Electronical & Cyber Defence, vol. 4, no. 2, pp. 39-52, 2016. (In Persian) | ||
آمار تعداد مشاهده مقاله: 158 تعداد دریافت فایل اصل مقاله: 151 |