تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,892 |
تعداد دریافت فایل اصل مقاله | 4,706,543 |
حرکت گروهی رباتهای پرنده چهارپره با حفظ فاصلهی ایمنی | ||
مکانیک هوافضا | ||
مقاله 2، دوره 19، شماره 3 - شماره پیاپی 73، آذر 1402، صفحه 17-32 اصل مقاله (1.03 M) | ||
نوع مقاله: گرایش دینامیک، ارتعاشات و کنترل | ||
نویسندگان | ||
علی ابراهیمی1؛ محمد فرخی* 2 | ||
1دانشجوی کارشناسی ارشد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
2نویسنده مسئول: استاد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران | ||
تاریخ دریافت: 16 دی 1401، تاریخ بازنگری: 07 بهمن 1401، تاریخ پذیرش: 06 اسفند 1401 | ||
چکیده | ||
در این مقاله، به ارائه روشی برای حرکت گروهی رباتهای پرنده چهارپره با حفظ فاصله ایمنی پرداختهشده است. برای این منظور، از ایده کنترل دوسطحی استفادهشده که در آن، کنترلکننده سطح بالا همان الگوریتم حرکت گروهی بوده و بهعنوان طراح مسیر مطلوب رباتهای چهارپره عمل میکند. ردیابی این مسیر مطلوبِ تولیدشده، توسط کنترلکننده سطح پایین انجامگرفته است. در کنترلکننده سطح بالا، الگوریتم حرکت گروهی جدیدی بهصورت بدون پیشرو معرفیشده که در آن برای رسیدن به شبکهبندی منظم و حفظ فاصلهی ایمنی از توابع پتانسیل فازی بهره برده شده است. این توابع پتانسیل، در وضعیت شبکهبندی منظم، مقدار کمینه دارند. ازاینرو در سیگنال کنترلی، با استفاده از روش گرادیان نزولی سعی در کمینه کردن مقدار آنها شده است. با سیگنال کنترلی معرفیشده، پایداری و همگرایی دینامیک ساختاری و انتقالی سیستم، در فضای بدون مانع اثباتشده است. درنهایت، عملکرد روش پیشنهادی از طریق شبیهسازی حرکت گروهی پنج ربات چهارپره ارزیابیشده است. نتایج شبیهسازی نشان داده است که روش پیشنهادی منجر به عملکرد بهتر در ایجاد شبکهبندی منظم و رعایت فاصله ایمنی در مقایسه با روشهای چاپشده اخیر در مقالات شده است. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
حرکت گروهی؛ سیستمهای چندعاملی؛ ربات پرنده؛ سیستم فازی | ||
عنوان مقاله [English] | ||
Flocking of Quadcopter Robots Observing Safety Distance | ||
نویسندگان [English] | ||
Ali Ebrahimi1؛ Mohammad Farrokhi2 | ||
1M.Sc. Student,, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
2Corresponding author: Professor, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
In this paper, a new method for flocking quadcopters is introduced. For this purpose, the idea of two-level control has been used, where the high-level controller is the same as the flocking algorithm and acts as the path designer of quadcopters. Moreover, tracking of the generated desired path is performed by a low-level controller. The main focus of this paper is on the high-level controller. A novel leaderless flocking algorithm is introduced, where new potential functions are generated using fuzzy logic to achieve a proper lattice. The introduced potential functions have a minimum value in the lattice positions. Therefore, the control signal minimizes its value by using the gradient-descent method to reach the desired situation. A safety radius is defined for every agent such that using the proposed flocking algorithm, the quadcopters do not enter each other's safety region. The stability and convergence of the structural and transitional dynamics of the system are shown. Finally, the proposed method is evaluated through simulations of five quadcopters. The results show that The proposed method provides better performance in creating a lattice, and maintaining obstacle as compared with recently published methods in literature. | ||
کلیدواژهها [English] | ||
Flocking, Multi-agent systems, Quadcopter, Fuzzy system | ||
مراجع | ||
[1] Reynolds CW, Flocks, herds and schools: A distributed behavioral model. 14th Annual Conference on Computer Graphics and Interactive Techniques; New York, USA, 1987.## [2] Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology. 2002; 218(1): 1-11.## [3] Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters. 1995; 75(6): 1226.## [4] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control. 2006; 51(3): 401-20.## [5] Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control. 2009; 54(2): 293-307.## [6] Gu D, Wang Z. Leader–follower flocking: algorithms and experiments. IEEE Transactions on Control Systems Technology. 2009; 17(5): 1211-9.## [7] Su H, Wang X, Yang W. Flocking in multi‐agent systems with multiple virtual leaders. Asian Journal of Control. 2008; 10(2): 238-45.## [8] Wu S, Pu Z, Yi J, Sun J, Xiong T, Qiu T. Adaptive Flocking of multi-agent systems with uncertain nonlinear dynamics and unknown disturbances using neural networks. 16th IEEE International Conference on Automation Science and Engineering (CASE); Hong Kong, China, 2020.## [9] Yang Z, Zhang Q, Jiang Z, Chen Z. Flocking of multi-agents with time delay. International Journal of Systems Science. 2012; 43(11): 2125-34.## [10] Zhu P, Dai W, Yao W, Ma J, Zeng Z, Lu H. Multi-robot flocking control based on deep reinforcement learning. IEEE Access. 2020; 8: 150397-150406.## [11] Beaver LE, Kroninger C, Malikopoulos AA. An optimal control approach to flocking. American Control Conference; 2020, Denver, USA.## [12] Gu D, Hu H. Using fuzzy logic to design separation function in flocking algorithms. IEEE Transactions on Fuzzy Systems. 2008; 16(4): 826-38.## [13] Sahu BK, Subudhi B. Flocking control of multiple AUVs based on fuzzy potential functions. IEEE Transactions on Fuzzy Systems. 2017; 26(5): 2539-2551.## [14] Iovino S, Vetrella AR, Fasano G, Accardo D, Savvaris A. Implementation of a distributed flocking algorithm with obstacle avoidance capability for UAV swarming. AIAA Information Systems-AIAA Infotech. 2017, Grapevine, Texas, USA.## [15] Liu W, Gao Z. A distributed flocking control strategy for UAV groups. Computer Communications. 2020; 153: 95-101.## [16] Ning Z, Song L, Huang D, Zhang X. Lattice flocking of multi-quadrotor system: an algorithm based on artificial potential field. Aerospace Systems. 2018; 1(1): 13-22.## [17] Yan C, Xiang X, Wang C. Fixed-Wing UAVs flocking in continuous spaces: A deep reinforcement learning approach. Robotics and Autonomous Systems. 2020; 131: 103594.## [18] Abichandani P, Speck C, Bucci D, Mcintyre W, Lobo D. Implementation of Decentralized Reinforcement Learning-Based Multi-Quadrotor Flocking. IEEE Access. 2021; 9: 132491-507.## [19] Zijian H, Xiaoguang G, Kaifang W, Yiwei Z, Qianglong W. Relevant experience learning: A deep reinforcement learning method for UAV autonomous motion planning in complex unknown environments. Chinese Journal of Aeronautics. 2021; 34(12): 187-204.## [20] Zhang X, Yuan Y, Zhang F. An improved flocking model for UAVs in constrained environments. 8th International Conference on Big Data and Information Analytics; 2022, Guiyang, China.## [21] Brandstätter A, Smolka SA, Stoller SD, Tiwari A, Grosu R. Multi-Agent Spatial Predictive Control with Application to Drone Flocking (Extended Version). arXiv preprint arXiv:220316960. 2022.## [22] Zhang P, Chen G, Li Y, Dong W. Agile formation control of drone flocking enhanced with active vision-based relative localization. IEEE Robotics and Automation Letters. 2022;7(3):6359-66.## [23] Wang L-X. A course in fuzzy systems. 1999.## [24] Zhang X, Li X, Wang K, Lu Y, A survey of modelling and identification of quadrotor robot. Abstract and Applied Analysis; volume 2014, Article ID 320526.## [25] Lu Y. yrlu/quadrotor: Quadrotor control, path planning and trajectory optimization. GitHub. 2017.## | ||
آمار تعداد مشاهده مقاله: 224 تعداد دریافت فایل اصل مقاله: 280 |