- Hemmat Esfe, M., D. Toghraie, and S. Alidoust, Experimental analysis on the rheological characteristics of MWCNT-ZnO (50:50)/5W30 oil non-Newtonian hybrid nanofluid to obtain a new correlation. Powder Technology, 2022. 407: p. 117595.
- Hemmat Esfe, M., D. Toghraie, S. Esfandeh, and S. Alidoust, Measurement of thermal conductivity of triple hybrid water based nanofluid containing MWCNT (10%) - Al2O3 (60%) - ZnO (30%) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 647: p. 129083.
- Hatami, M., M. Jafaryar, J. Zhou, and D. Jing, Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids. International Journal of Hydrogen Energy, 2017. 42(16): p. 10891-10900.
- Esfe, M.H., H. Rostamian, D. Toghraie, M. Hekmatifar, and A.T. Khalil Abad, Numerical study of heat transfer of U-shaped enclosure containing nanofluids in a porous medium using two-phase mixture method. Case Studies in Thermal Engineering, 2022. 38: p. 102150.
- Elsaid, A.M., Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 2019. 108: p. 104263.
- Peyghambarzadeh, S.M., S.H. Hashemabadi, S.M. Hoseini, and M. Seifi Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer, 2011. 38(9): p. 1283-1290.
- Ahmed, S.A., M. Ozkaymak, A. Sözen, T. Menlik, and A. Fahed, Improving car radiator performance by using TiO2-water nanofluid. Engineering Science and Technology, an International Journal, 2018. 21(5): p. 996-1005.
- Subhedar, D.G., B.M. Ramani, and A. Gupta, Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering, 2018. 11: p. 26-34.
- Selvam, C., R. Solaimalai Raja, D. Mohan Lal, and S. Harish, Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions. International Journal of Heat and Mass Transfer, 2017. 115: p. 580-588.
- Said, Z., M. El Haj Assad, A.A. Hachicha, E. Bellos, M.A. Abdelkareem, D.Z. Alazaizeh, and B.A.A. Yousef, Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 2019. 112: p. 183-194.
- Ijaz, H., H. Raza, G.A. Gohar, S. Ullah, A. Akhtar, and M. Imran, Effect of graphene oxide doped nano coolant on temperature drop across the tube length and effectiveness of car radiator – A CFD study. Thermal Science and Engineering Progress, 2020. 20: p. 100689.
- Hwang, Y., J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, and S.P. Jang, Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta, 2007. 455(1): p. 70-74.
- Shah, A.P. and A. Gaurvadkar, Design and development of automotive radiator for better cooling efficiency. Materials Today: Proceedings, 2022.
- Habibian, S.H., A. Mostafazade Abolmaali, and H. Afshin, Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compactfinned-tube heat exchangers for automobile radiator. Applied Thermal Engineering, 2018. 133: p. 248-260.
- Javaherdeh, K., A. Vaisi, R. Moosavi, and M. Esmaeilpour, Experimental and Numerical Investigations on Louvered Fin-and-Tube Heat Exchanger WithVariable Geometrical Parameters. Journal of Thermal Science and Engineering Applications, 2017. 9(2).
- De Schampheleire, S., P. De Jaeger, H. Huisseune, B. Ameel, C. T'Joen, K. De Kerpel, and M. De Paepe, Thermal hydraulic performance of 10 PPI aluminium foam as alternative for louvered fins in an HVAC heat exchanger. Applied Thermal Engineering, 2013. 51(1): p. 371-382.
- Goudarzi, K. and H. Jamali, Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Applied Thermal Engineering, 2017. 118: p. 510-517.
- Sadhasivam, C., S. Murugan, P. Manikandaprabu, S. Mohana Priyadharshini, and J. Vairamuthu, Computational investigations on helical heat flow exchanger in automotive radiator tubes with computational fluid dynamics. Materials Today: Proceedings, 2021. 37: p. 2352-2355.
- Karimi, A. and M. Afrand, Numerical study on thermal performance of an air-cooled heat exchanger: Effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management, 2018. 164: p. 615-628.
- Khan, V.Y.F., Experimental Study For Heat Transfer Enhancement of a Radiator using Twisted Inserts with Different Coolants. Journal of Advanced Research in Mechanical Engineering and Technology, 2018. 5(1 & 2): p. 25-29.
- Krásný, I., I. Astrouski, and M. Raudenský, Polymeric hollow fiber heat exchanger as an automotive radiator. Applied Thermal Engineering, 2016. 108: p. 798-803.
- Sanders, P.A. and K.A. Thole, Effects of winglets to augment tube wall heat transfer inlouvered fin heat exchangers. International Journal of Heat and Mass Transfer, 2006. 49(21): p. 4058-4069.
- Sertkaya, A.A., K. Altınısık, and K. Dincer, Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cellaluminum foam heat exchangers. Experimental Thermal and Fluid Science, 2012. 36: p. 86-92.
- Verfahrenstechnik, G., VDI Heat Atlas. Second Edition ed. 2010, Dusseldorf, Germany: Springer.
- M.White, F., Viscous Fluid Flow. Third Edition ed. 2006: McGrawHill.
- Farajollahi, A.H., Firoozy, R., Poursefi, M. (2020). 'Numerical Investigation on the Influence of the Nozzle Geometry and Needle Lift Profile Simultaneous Change on Spray Behavior of Diesel Fuel in Injector', Fluid Mechanics & Aerodynamics Journal, 8(2), pp. 97-110. (In Persian)
- Nemati, M., sefid, M. (2022). 'Evaluation of Amount the Entropy Production Due to MHD Hybrid Nanofluid Conjugate Heat Transfer with Heat Absorption/Generation', Fluid Mechanics & Aerodynamics Journal, 10(2). (In Persian)
- ebrahimi, A., shokri, M. (2019). 'Convective Heat Transfer Analysis of Supercritical-Pressure Methane in a Regenerative Cooling Channel', Fluid Mechanics & Aerodynamics Journal, 7(2), pp. 1-17. (In Persian)
- Jafari, M., Farajollahi, A. & Gazori, H. The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures. J Therm Anal Calorim 144, 167–178 (2021). https://doi.org/10.1007/s10973-020-09408-1
- Faraj, A., J. Faraj, E. Harika, F. Hachem, and M. Khaled, Development of a new method for estimating the overall heat transfer coefficient of heat exchangers – Validation in automotive applications. Case Studies in Thermal Engineering, 2021. 28: p. 101434.
- Warren M.Rohsenow , J.P.H., Young I.Cho, Handbook of Heat Transfer. Third edition ed. 1998, New York: McGraw-Hill.
- Bejan, A., Convective Heat Transfer. Fourth Edition ed. 2013, Unites States of America: Wiley.
|