تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,814 |
تعداد دریافت فایل اصل مقاله | 4,706,429 |
تحلیل میزان اثرگذاری عوامل داخلی و خارجی بر تولید آنتروپی و انتقال حرارت نانوسیال غیرنیوتنی از طریق روش شبکه بولتزمن | ||
مکانیک هوافضا | ||
مقاله 1، دوره 20، شماره 1 - شماره پیاپی 75، فروردین 1403، صفحه 1-25 اصل مقاله (7.54 M) | ||
نوع مقاله: گرایش پیشرانش و انتقال حرارت | ||
نویسندگان | ||
محمد نعمتی1؛ محمد سفید* 2؛ آرش کریمی پور3 | ||
1دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
2استاد، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
3دانشیار، گروه مهندسی مکانیک، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران | ||
تاریخ دریافت: 08 بهمن 1402، تاریخ بازنگری: 02 اسفند 1402، تاریخ پذیرش: 25 اسفند 1402 | ||
چکیده | ||
ارزیابی مقدار تولید آنتروپی طی انتقال حرارت جابجایی طبیعی درون محفظهای دوبعدی حاوی نانوسیال غیرنیوتنی، هدف از انجام این پژوهش با استفاده از روش شبکه بولتزمن است. محفظه در معرض جذب/تولید حرارت یکنواخت و میدان مغناطیسی یکنواخت و غیریکنواخت در زوایای مختلف قرار دارد. ویژگی کار حاضر، بررسی اثر تشعشع حجمی و شکل دیواره سرد محفظه در سه شکل صاف، منحنی و مورب بر مشخصات جریان است. کاربرد در طراحی خنککنندههای الکترونیکی و کلکتورهای خورشیدی ازجمله موارد عملی این تحقیق است. تطابق قابلقبول نتایج حاصلشده با مطالعات مرتبط قبلی، صحت نتایج ارائهشده را تأیید کرد. بر اساس نتایج، وجود پارامتر تشعشع منجر به بهبود انتقال حرارت میشود که این اثر به ازای افزایش شاخص توانی سیال مشهودتر است. علاوه بر کاهش عدد ناسلت به ازای افزایش شاخص توانی سیال، اثربخشی وجود میدان مغناطیسی در کاهش مقدار آنتروپی و نرخ انتقال حرارت به ازای کاهش شاخص توانی سیال افزایش مییابد. دستیابی به قدرت جریان و عدد ناسلت بالاتر به ترتیب تا حدود 40٪ و 61٪، به ازای اعمال میدان مغناطیسی عمودی و غیریکنواخت امکانپذیر است. اگرچه به ازای تولید حرارت، پایینترین مقدار شاخص عملکرد حرارتی و عدد ناسلت وجود خواهد داشت، اما بیشترین اثرگذاری میدان مغناطیسی در حالت تولید حرارت مشاهده میشود. با طراحی دیواره به شکل صاف علاوه بر افزایش شاخص عملکرد حرارتی، کاهش عدد بجان نیز مقدور است. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
جابجایی طبیعی؛ نانوسیال غیرنیوتنی؛ تشعشع حجمی؛ تولید آنتروپی؛ جذب/تولید حرارت یکنواخت؛ میدان مغناطیسی غیریکنواخت | ||
عنوان مقاله [English] | ||
Analysis of Entropy and Heat Transfer of Non-Newtonian Ferrofluid Under the Effect of Various External and Internal Factors | ||
نویسندگان [English] | ||
Mohammad Nemati1؛ Mohammad Sefid2؛ Arash Karimipour3 | ||
1Ph.D. Student, Faculty of Mechanical Engineering, Yazd University, Yazd, Iran | ||
2Corresponding author: Professor, Faculty of Mechanical Engineering, Yazd University, Yazd, Iran | ||
3Associate Professor, Faculty of Mechanical Engineering, Islamic Azad University, Najafabad Branch, Iran | ||
چکیده [English] | ||
The target of this research is to investigate the amount of entropy production during natural convection inside a 2D chamber containing a non-Newtonian nanofluid using the lattice Boltzmann method. The chamber is exposed to uniform heat absorption/production and uniform and non-uniform magnetic field at different angles. The feature of the present work is to evaluate the effect of thermal radiation and the shape of the cavity cold wall in three shapes: smooth, curved and diagonal on the flow characteristics. Application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. Acceptable agreement of the obtained results with previous related studies confirmed the validity of the presented results. Based on the results, the presence of radiation parameter leads to the improvement of heat transfer, which is more evident due to the increase of fluid power-law index. In addition to reducing the Nusselt value for enhancing the fluid power-law index, the effectiveness of the presence of the magnetic field in reducing the entropy and heat transfer rate enhances as the fluid power-law index decreases. It is feasible to attain the flow strength and the Nusselt value up to 40% and 61% more, respectively, by applying a vertical and non-uniform magnetic field. Although for heat production mode, there will be the lowest value of thermal performance index and the Nusselt value, the greatest influence of the magnetic field is observed in the heat production mode. By designing the wall in a smooth shape, in addition to increase the thermal performance coefficient, it is possible to decline the Bejan value. | ||
کلیدواژهها [English] | ||
Natural convection, Non-Newtonian nanofluid, Volumetric radiation, Entropy production, Uniform heat absorption/production, Non-uniform magnetic field | ||
مراجع | ||
[1] Al-Farhany K, Al-Muhja B, Ali F, Khan U, Zaib A, Raizah Z, Galal AM. The baffle length effects on the natural convection in nanofluid-filled square enclosure with sinusoidal temperature. Molecules. 2022 Jul 12;27(14):4445. DOI:10.3390/molecules27144445. [2] Omara A, Touiker M, Bourouis A. Thermosolutal natural convection in a partly porous cavity with sinusoidal wall heating and cooling. International Journal of Numerical Methods for Heat & Fluid Flow. 2022 Jan 20;32(3):1115-44. DOI:10.1108/HFF-01-2021-0062. [3] Iftikhar B, Siddiqui MA, Javed T. Dynamics of magnetohydrodynamic and ferrohydrodynamic natural convection flow of ferrofluid inside an enclosure under non-uniform magnetic field. Alexandria Engineering Journal. 2023 Mar 1;66:523-36. DOI:10.1016/j.aej.2022.11.011. [4] Islam T, Yavuz M, Parveen N, Fayz-Al-Asad M. Impact of non-uniform periodic magnetic field on unsteady natural convection flow of nanofluids in square enclosure. Fractal and Fractional. 2022 Feb 11;6(2):101. DOI:10.3390/fractalfract6020101. [5] Nemati M, Farahani SD. Using lattice Boltzmann method to control entropy generation during conjugate heat transfer of power-law liquids with magnetic field and heat absorption/production. Computational Particle Mechanics. 2023 Jun;10(3):331-54. DOI 10.1007/s40571-022-00497-3. [6] Shahriari A. Numerical simulation of free convection heat transfer of nanofluid in a wavy-wall cavity with sinusoidal temperature distribution, using lattice Boltzmann method. Modares Mechanical Engineering. 2016 Nov 10;16(9):143-54. DOR http://dorl.net/dor/20.1001.1.10275940.1395.16.9.11.0. [7] Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat and Mass Transfer. 2003 Aug 1;125(4):567-74. DOI:10.1115/1.1571080. [8] Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat and mass transfer. 2003 Sep;39(8-9):775-84. DOI:10.1007/s00231-002-0382-z. [9] Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters. 2005 Oct 10;87(15):153107. DOI:10.1063/1.2093936. [10] Khan F, Xiao-Dong Y, Aamir N, Saeed T, Ibrahim M. The effect of radiation on entropy and heat transfer of MHD nanofluids inside a quarter circular enclosure with a changing L-shaped source: lattice Boltzmann methods. Chemical Engineering Communications. 2023 May 4;210(5):740-55. DOI:10.1080/00986445.2021.1990887. [11] Hussain S, Pour MS, Jamal M, Armaghani T. MHD mixed convection and entropy analysis of non-Newtonian hybrid nanofluid in a novel wavy elbow-shaped cavity with a quarter circle hot block and a rotating cylinder. Experimental Techniques. 2023 Feb;47(1):17-36. DOI:10.1007/s40799-022-00549-6. [12] Kumar S, Sharma K. Entropy optimization analysis of Marangoni convective flow over a rotating disk moving vertically with an inclined magnetic field and nonuniform heat source. Heat Transfer. 2023 Mar;52(2):1778-805. DOI:10.1002/htj.22763. [14] Tighchi HA, Sobhani M, Esfahani JA. Effect of volumetric radiation on natural convection in a cavity with a horizontal fin using the lattice Boltzmann method. The European Physical Journal Plus. 2018 Jan;133:1-8. DOI:10.1140/epjp/i2018-11835-1. [15] Sheikholeslami M, Li Z, Shamlooei MJ. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Physics Letters A. 2018 Jun 19;382(24):1615-32. DOI:10.1016/j.physleta.2018.04.006. [16] Bai J, Hu X, Tao YH, Ji WH. Investigation of non-Newtonian power-law free convection affected by a magnetic field in an inclined quarter-circle chamber containing the lozenge-shaped obstacle via MRT-LBM of first and second laws of thermodynamics. Engineering Analysis with Boundary Elements. 2022 Dec 1;145:335-51. DOI:10.1016/j.enganabound.2022.09.022. [17] Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. International Journal of Mechanical Sciences. 2019 Mar 1;152:99-117. DOI:10.1016/j.ijmecsci.2018.12.030. [18] Rezaie MR, Norouzi M. Numerical investigation of MHD flow of non-Newtonian fluid over confined circular cylinder: a lattice Boltzmann approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018 Apr;40:1-0. DOI:10.1007/s40430-018-1128-2. [19] Rahman A, Redwan DA, Thohura S, Kamrujjaman M, Molla MM. Natural convection and entropy generation of non-Newtonian nanofluids with different angles of external magnetic field using GPU accelerated MRT-LBM. Case Studies in Thermal Engineering. 2022 Feb 1;30:101769. DOI:10.1016/j.csite.2022.101769. [20] Aljaloud AS. Hybrid nanofluid mixed convection in a cavity under the impact of the magnetic field by lattice Boltzmann method: Effects of barrier temperature on heat transfer and entropy. Engineering Analysis with Boundary Elements. 2023 Feb 1;147:276-91. DOI:10.1016/j.enganabound.2022.12.007. [21] Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. International Journal of Thermal Sciences. 2012 Aug 1;58:130-42. DOI:10.1016/j.ijthermalsci.2012.02.029. [22] Zainodin S, Jamaludin A, Nazar R, Pop I. MHD Mixed Convection Flow of Hybrid Ferrofluid through Stagnation-Point over the Nonlinearly Moving Surface with Convective Boundary Condition, Viscous Dissipation, and Joule Heating Effects. Symmetry. 2023 Apr 7;15(4):878. DOI:10.3390/sym15040878. [23] Rana BK, Senapati JR. Natural convection from an isothermally heated hollow vertical cylinder submerged in quiescent power-law fluids. Journal of Thermal Science and Engineering Applications. 2023 Feb 1;15(2):021003. DOI:10.1115/1.4055824. [24] Malkeson SP, Alshaaili S, Chakraborty N. Numerical investigation of steady state laminar natural convection of power-law fluids in side-cooled trapezoidal enclosures heated from the bottom. Numerical Heat Transfer, Part A: Applications. 2023 Apr 3;83(7):770-89. DOI:10.1080/10407782.2022.2157353. [25] Alqahtani AM, Sajadi SM, Al Hazmi SE, Alsenani TR, Alqurashi RS, El Bouz MA. Entropy generation and mixed convection in an enclosure with five baffles exposed to a uniform magnetic field with volumetric radiation for the solar collectors via lattice Boltzmann method. Engineering Analysis with Boundary Elements. 2023 May 1;150:285-97. DOI:10.1016/j.enganabound.2023.01.028. [26] Rahman A, Nag P, Molla MM, Hassan S. Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method. International Journal of Modern Physics C. 2021 Jan 17;32(01):2150015. DOI:10.1142/S0129183121500157. [27] Nemati M, Sefid M, Mohammad Sajadi S, Ghaemi F, Baleanu D. Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation. Journal of Thermal Analysis and Calorimetry. 2022 Oct;147(19):10569-94. DOI:10.1007/s10973-022-11271-1. [28] Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. International Communications in Heat and Mass Transfer. 2008 Jul 1;35(6):696-703. DOI DOI:10.1016/j.icheatmasstransfer.2008.02.002. [29] Massoudi MD, Ben Hamida MB, Almeshaal MA. Free convection and thermal radiation of nanofluid inside nonagon inclined cavity containing a porous medium influenced by magnetic field with variable direction in the presence of uniform heat generation/absorption. International Journal of Numerical Methods for Heat & Fluid Flow. 2021 Mar 10;31(3):933-58. DOI:10.1108/HFF-04-2020-0223.
| ||
آمار تعداد مشاهده مقاله: 391 تعداد دریافت فایل اصل مقاله: 454 |