تعداد نشریات | 36 |
تعداد شمارهها | 1,208 |
تعداد مقالات | 8,730 |
تعداد مشاهده مقاله | 7,236,409 |
تعداد دریافت فایل اصل مقاله | 4,225,007 |
کمیسازی عدم قطعیت جریان گذر صوتی حول ایرفویل RAE2822 تحت شرایط هندسه غیرقطعی | ||
مکانیک سیالات و آیرودینامیک | ||
مقاله 3، دوره 12، شماره 2 - شماره پیاپی 32، اسفند 1402، صفحه 33-42 اصل مقاله (823.52 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
امیر گودرزی* 1؛ اکبر محمدی احمر2؛ آرش محمدی3؛ حسین منصوری4 | ||
1دکتری تخصصی ، دانشگاه جامع امام حسین علیه السلام، تهران، ایران | ||
2دکتری تخصصی، دانشگاه تهران،تهران، ایران | ||
3دکتری تخصصی، دانشگاه تهران، تهران، ایران | ||
4دکتری تخصصی، دانشگاه جامع امام حسین (ع)، تهران، ایران | ||
تاریخ دریافت: 13 شهریور 1402، تاریخ بازنگری: 15 دی 1402، تاریخ پذیرش: 18 بهمن 1402 | ||
چکیده | ||
از دیرباز عدم قطعیت بهعنوان عامل غیرقابلانکار در مطالعه پدیدههای فیزیکی موردتوجه بوده است. ازاینرو جهت حصول نتایج قابلاطمینان در کاربردهای مهندسی از طریق پیشبینیهای محاسباتی، تمامی منابع عدم قطعیت موجود در سیستم باید در نظر گرفته شود. پیشرفتهای اخیر در دینامیک سیالات محاسباتی این امکان را فراهم کرده است که اثرات عدم قطعیت بر میدانهای جریان و انتقال حرارت پیچیده در کاربردهای مهندسی موردمطالعه قرار گیرند. در مقاله حاضر آنالیز عدم قطعیت میدان جریان گذر صوتی اطراف ایرفویل RAE 2822 بهعنوان یک مسئله چالشی در حوزه دینامیک سیالات محاسباتی تحت اثر عدم قطعیت هندسه ایرفویل ناشی از تلرانسهای ساخت ارزیابی شده است. در ابتدا کد توسعهیافته بسط چندجملهای آشوب بر روی چند تابع چالشی و غیرخطی اعتبارسنجی گردیده است. سپس برای ایجاد عدم قطعیت هندسی در ایرفویل RAE 2822، روش کارهونن لوو (KL) با بهرهگیری از تعداد 18 متغیر تصادفی و انجام 2660 شبیهسازی مختلف به کار گرفته شده است. نتایج بهدستآمده از ضریب فشار غیرقطعی اطراف ایرفویل نشان میدهند که عدم قطعیتهای هندسی با شدت بیشتری مکان وقوع و قدرت شوک نرمال را تحتتأثیر قرار میدهند. | ||
کلیدواژهها | ||
کمیسازی عدم قطعیت؛ بسط چندجملهای آشوب؛ روشهای کارا؛ تحلیل حساسیت؛ دینامیک سیالات محاسباتی | ||
عنوان مقاله [English] | ||
Uncertainty Quantification of Transonic RAE2822 Airfoil under Geometrical Uncertainties | ||
نویسندگان [English] | ||
Amir Goudarzi1؛ Akbar Mohammadi Ahmar2؛ Arash Mohammadi3؛ Hossein Mansouri4 | ||
1Ph.D., Imam Hossein (AS) University, Tehran, Iran | ||
2PhD, University of Tehran, Tehran, Iran | ||
3PhD, University of Tehran, Tehran, Iran | ||
4Ph.D., Imam Hossein (AS) University, Tehran, Iran | ||
چکیده [English] | ||
Uncertainty has been known as an unavoidable parameter since early steps of investigation on physical phenomena. Therefore, to ensure validity of numerical simulations in the engineering applications, all of the related uncertainty sources must be considered. The examination of uncertainty effects on the flow field and heat transfer in the complex applications have been possible by recent advances in the computational fluid dynamics (CFD) methods. In this paper, the analysis of the uncertainty quantification (UQ) of the transonic flow field around the RAE 2822 airfoil is evaluated as a challenging problem in the CFD field under the effect of airfoil geometry uncertainties caused by manufacturing tolerances. At first, the developed code of polynomial chaos expansion (PCE) is validated on the several challenging and nonlinear test functions. Then, to construct geometrical uncertainties in the RAE 2822 airfoil, the Karhunen-Loeve (KL) method is employed by using 18 random variables and performing 2660 different CFD simulations. The obtained results from the non-deterministic pressure coefficient around the airfoil show that the geometric uncertainties more strongly affect the place of occurrence and the strength of the normal shock. | ||
کلیدواژهها [English] | ||
Uncertainty quantification, Polynomial chaos expansion, Efficient methods, Sensitivity analysis, Computational fluid dynamic | ||
مراجع | ||
Ghanem, R.G. and P.D. Spanos, Stochastic Finite Element Method: Response Statistics, in Stochastic Finite Elements: A Spectral Approach. 1991, Springer. p. 101-119. [2] Wiener, N., The homogeneous chaos. American Journal of Mathematics, 1938. 60(4): p. 897-936. [3] Raisee, M., D. Kumar, and C. Lacor, A non‐intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition. International Journal for Numerical Methods in Engineering, 2015. 103(4): p. 293-312. [4] Salehi, S., et al., On the flow field and performance of a centrifugal pump under operational and geometrical uncertainties. Applied Mathematical Modelling, 2018. 61: p. 540-560. [5] Carnevale, M., et al., Uncertainty quantification: A stochastic method for heat transfer prediction using LES. Journal of Turbomachinery, 2013. 135(5): p. 051021. [6] Mohammadi, A. and M. Raisee, Effects of operational and geometrical uncertainties on heat transfer and pressure drop of ribbed passages. Applied Thermal Engineering, 2017. 125: p. 686-701. [7] Knio, O.M., H.N. Najm, and R.G. Ghanem, A stochastic projection method for fluid flow: I. basic formulation. Journal of computational Physics, 2001. 173(2): p. 481-511. [8] Lacor, C. and S. Smirnov. Non-deterministic compressible navier-stokes simulations using polynomial chaos. in Proc. ECCOMAS Conf. 2008. [9] Dinescu, C., et al., Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions. International Journal of Engineering Systems Modelling and Simulation, 2010. 2(1-2): p. 87-98. [10] Xiu, D. and D.M. Tartakovsky, Numerical methods for differential equations in random domains. SIAM Journal on Scientific Computing, 2006. 28(3): p. 1167-1185. [11] Xiu, D. and G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of computational physics, 2003. 187(1): p. 137-167. [12] Sobol', Ilya M. "Theorems and examples on high dimensional model representation." Reliability Engineering and System Safety 79, no. 2 (2003): 187-193.
[13] Ishigami, Tsutomu, and Toshimitsu Homma. "An importance quantification technique in uncertainty analysis for computer models." In [1990] Proceedings. First international symposium on uncertainty modeling and analysis, pp. 398-403. IEEE, 1990. [14] An, Jian, and Art Owen. "Quasi-regression." Journal of complexity 17, no. 4 (2001): 588-607. [15] Wang, Limin. Karhunen-Loeve expansions and their applications. London School of Economics and Political Science (United Kingdom), 2008. [16] A. Mohammadi-Ahmar, M. Raisee, Multi-fidelity uncertainty quantification of film cooling flow under random operational and geometrical conditions, International Journal of Heat and Mass Transfer 152 (2020) 119548. [17] A. Mohammadi-Ahmar, A. Mohammadi, M. Raisee, Efficient uncertainty quantification of turbine blade leading edge film cooling using bi-fidelity combination of compressed sensing and Kriging, International Journal of Heat and Mass Transfer 162 (2020) 120360. [18] Sobol', I.y.M., On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1967. 7(4): p. 784-802. [19] D. Kumar, M. Raisee, and C. Lacor, “An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD,” Computers & Fluids, Vol. 138, pp. 67–82, 2016, [20] S. Salehi, M. Raisee, M. J. Cervantes, and A. Nourbakhsh, “Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing,” Computers & Fluids, Vol. 154, pp. 296–321, 2017, [21] P. Cook, M. Firmin, and M. McDonald. Aerofoil RAE 2822: pressure distributions, and boundary layer and wake measurements. RAE, 1977. [22] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in 30th aerospace sciences meeting and exhibit, p. 439, | ||
آمار تعداد مشاهده مقاله: 219 تعداد دریافت فایل اصل مقاله: 184 |