تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,844,884 |
تعداد دریافت فایل اصل مقاله | 4,706,526 |
مدل سازی مساله مکان یابی- مسیریابی لجستیک امدادی با در نظر گرفتن انواع افراد تحت شرایط عدم قطعیت | ||
مدیریت زنجیره تأمین | ||
دوره 26، شماره 82، اردیبهشت 1403، صفحه 55-66 اصل مقاله (1.45 M) | ||
نوع مقاله: پژوهشی | ||
نویسندگان | ||
بهروز بایگان1؛ احمد مهرابیان* 2؛ مهدی یوسفی نژاد عطاری3؛ محمد جعفر دوستی دیلمی4 | ||
1دانشجوی دکتری گروه مهندسی صنایع، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران. | ||
2استادیار گروه مهندسی صنایع، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران | ||
3استادیار گروه مهندسی صنایع، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران. | ||
4استادیار گروه ریاضی، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران | ||
تاریخ دریافت: 23 مهر 1402، تاریخ بازنگری: 30 آذر 1402، تاریخ پذیرش: 17 بهمن 1402 | ||
چکیده | ||
مدیرت بحران در هنگام وقوع بلایا جهت کاهش حداکثری خسارات و تلفات از اهمیت بسیار بالایی برخوردار است. از بعد مدیریت بحران، لجستیک امداد جایگاه خاصی دارد، زیرا یکی از نیازهای مهم در مدیریت بحران قابلیت نقل و انتقال سریع نیروهای امدادی و اقلام مورد نیاز به منطقه بحران زده و نیز خروج آسیبدیدگان و افراد در هنگام و بعد از وقوع بحران است. در این پژوهش به مکانیابی، مسیریابی و توزیع کالاهای امدادی در شرایط وقوع زلزله پرداخته میشود. بیشینه کردن احتمال عبور موفق از مسیرها، کمینه کردن هزینههای امدادی و کمینهسازی مازاد و کمبود پرسنل امدادی انتقالی به مناطق آسیب دیده از جمله اهداف این پژوهش میباشد. مدل ریاضی پیشنهادی با رویکرد محدودیت اپسیلون توسعه یافته و با استفاده از نرم افزار گمز برای مطالعه موردی منطقه 11 تهران حل گردیده است. در نظر گرفتن انواع مجروحین شامل مجروحان سرپایی و مجروحان شدید، همچنین بیخانمانها و پرسنل امداد بصورت همزمان و مدلسازی ریاضی سه هدفه، چندکالایی، چند وسیلهای با ملاحظات عدم قطعیت بصورت سناریویی از جمله نوآوریهای این پژوهش بشمار میرود. | ||
کلیدواژهها | ||
لجستیک امداد؛ محدودیت اپسیلون توسعه یافته؛ مسیریابی؛ مکانیابی | ||
عنوان مقاله [English] | ||
The Mathematical Model for Location-Routing Problem of Relief Logistics Considering the Types of People Under Conditions of Uncertainty | ||
نویسندگان [English] | ||
Behrooz Bayegan1؛ Ahmad Mehrabian2؛ Mahdi Yousefi Nejad Attari3؛ Mohammad Jafar Doosti dylami4 | ||
1Department of industrial engineering, Aliabad katoul, Branch, Islamic Azad university, Aliabad katoul, Iran; | ||
2Department of industrial engineering, Aliabad katoul, Branch, Islamic Azad university, Aliabad katoul, Iran; | ||
3Department of industrial engineering, Bonab Branch, Islamic Azad university, Bonab, Iran | ||
4Department of Mathematics, Aliabad katoul, Branch, Islamic Azad university, Aliabad katoul, Iran | ||
چکیده [English] | ||
Crisis management holds significant importance during the occurrence of disasters to ensure maximum reduction in damages and casualties. From a crisis management perspective, emergency logistics occupy a special position because swift transportation of relief personnel and necessary supplies to the affected area, as well as the evacuation of the injured and others during and after a disaster, are amongst the critical needs. This research addresses the locating, routing, and distribution of emergency supplies in the context of earthquakes. Objectives of this research include maximizing the probability of successfully navigating routes, minimizing emergency response costs, and reducing discrepancies in the allocation of relief personnel to affected regions. The proposed mathematical model, enhanced with an augmented epsilon constraint approach, has been solved using the GAMS software for a case study of Tehran's 11th district. The consideration of various types of injured individuals, including those with minor injuries and those in critical condition, as well as the homeless and relief workers in a concurrent manner, and the development of a three-objective, multi-commodity, multi-vehicle mathematical model with scenarios incorporating uncertainty, are among the innovations of this study. | ||
کلیدواژهها [English] | ||
Relief Logistics, Expanded Epsilon Limitation, Routing, Positioning | ||
مراجع | ||
[1] G. de Castro Pena, A. C. Santos, and C. Prins, "Solving the integrated multi-period scheduling routing problem for cleaning debris in the aftermath of disasters," European Journal of Operational Research, vol. 306, no. 1, pp. 156-172, 2023/04/01/ https://doi.org/10.1016/j.ejor.2022.07.005 [2] M. Tavana, A.-R. Abtahi, D. D. Caprio, R. Hashemi, and R. Y. Zenouz, "An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations," Socio-Economic Planning Sciences, vol. 64, pp. 21-37, 2018 https://doi.org/10.1016/j.seps.2017.12.004 [3] A. M. Afshar, "A mathematical framework for optimizing disaster relief logistics," Thesis for Degree Doctor of Philosophy, Department of Civil and Environmental Engineering, University of Maryland, 2011. [4] C. Cao, Y. Liu, O. Tang, and X. Gao, "A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains," International Journal of Production Economics, vol. 235, p. 108081. https://doi.org/10.1016/j.ijpe.2021.108081 [5] I. Shokr, F. Jolai, and A. Bozorgi-Amiri, "A novel humanitarian and private sector relief chain network design model for disaster response," International Journal of Disaster Risk Reduction, vol. 65, p. 102522, 2021/11/01/ 2021. https://doi.org/10.1016/j.ijdrr.2021.102522. [6] S. Mohammadi, S. Avakh Darestani, B. Vahdani, and A. Alinezhad, "A robust neutrosophic fuzzy-based approach to integrate reliable facility location and routing decisions for disaster relief under fairness and aftershocks concerns," Computers & Industrial Engineering, vol. 148, p. 106734, 2020/10/01/ 2020. https://doi.org/10.1016/j.cie.2020.106734. [7] B. Rabta, C. Wankmüller, and G. Reiner, "A drone fleet model for last-mile distribution in disaster relief operations," International Journal of Disaster Risk Reduction, vol. 28, pp. 107-112, 2018/06/01/ 2018. https://doi.org/10.1016/j.ijdrr.2018.02.020.
[9] P. Ghasemi, F. Goodarzian, and A. Abraham, "A new humanitarian relief logistic network for multi-objective optimization under stochastic programming," Applied Intelligence, vol. 52, no. 12, pp. 13729-13762, 2022/09/01 2022. https:// doi: 10.1007/s10489-0 [10] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, "The Location of Emergency Service Facilities," Operation Research, vol. 19, no. 6, pp. 1363-1373, 1971. https://doi.org/10.1287/opre.19.6.1363. [11] W. Yi and L. Özdamar, "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, vol. 179, no. 3, pp. 1177-1193, 2007, doi: 10.1016/j.ejor.2005.03.077. [12] A. Afshar and A. Haghani, "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences vol. 46, no. 4, pp. 327-338, 2012, doi: 10.1016/j.seps.2011.12.003. [13] A. BozorgiAmiri, M. S. Jabalameli, M. Alinaghian, and M. Heydari, "A modified particle swarm optimization for disaster relief logistics under uncertain environment," The International Journal of Advanced Manufacturing Technology, vol. 60, no. 1-4, pp. 357-371, 2012, doi: 10.1007/s00170-011-3596-8. [14] J. A. Paul and G. Hariharan, "Location-allocation planning of stockpiles for effective disaster mitigation," Annals of Operations Research, vol. 196, no. 1, pp. 469-490, 2012, doi: 10.1007/s10479-011-1052-7. [15] R. Abounacer, M. Rekik, and J. Renaud, "An exact solution approach for multi-objective location–transportation problem for disaster response," Computers & Operations Research, vol. 41, pp. 83-93, 2014, doi: 10.1016/j.cor.2013.08.001. [16] H. Wang, L. Du, and S. Ma, "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E, vol. 69, pp. 160-179, 2014, doi: 10.1016/j.tre.2014.06.006. [17] M. Ahmadi, A. Seifi, and B. Tootooni, "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, vol. 75, pp. 145-163, 2015, doi: 10.1016/j.tre.2015.01.008. [18] B. Vahdani, D. Veysmoradi, F. Noori, and F. Mansour, "Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty," International Journal of Disaster Risk Reduction, vol. 27, pp. 290-306, 2018. https://doi.org/10.1016/j.ijdrr.2017.10.015. [19] D. Veysmoradi, B. Vahdani, M. F. Sartangi, and S. M. Mousavi, "Multi-objective open location-routing model for relief distribution networks with split delivery and multi-mode transportation under uncertainty," Scientia Iranica E: Industrial engineering, vol. 25, no. 6, pp. 3635-3653, 2018. [20] P. Ghasemi, K. Khalili-Damghani, A. Hafezalkotob, and S. Raissi, "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, vol. 350, pp. 105-132, 2019. https://doi.org/10.1016/j.amc.2018.12.061 [21] F. Faghih-Mohammadi, M. Nasiri, D. Konur." Cross-dock facility for disaster relief operations", Annals of Operations Research, vol. 322, pp. 497-538, 2023 . https://doi.org/10.1007/s10479-022-04939-2 | ||
آمار تعداد مشاهده مقاله: 185 تعداد دریافت فایل اصل مقاله: 134 |