تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,845,053 |
تعداد دریافت فایل اصل مقاله | 4,706,656 |
یک رویکرد هدایت مبتنی بر زاویه خط دید در مساله هدایت صفحهای | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
دوره 21، شماره 61، تیر 1402، صفحه 73-81 اصل مقاله (942.29 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
ولی اله غفاری* 1؛ حسن محمد خانی2 | ||
1گروه مهندسی برق، دانشگاه خلیج فارس | ||
2گروه مهندسی هوافضا،دانشگاه جامع امام حسین (ع) | ||
تاریخ دریافت: 26 فروردین 1402، تاریخ بازنگری: 08 اردیبهشت 1402، تاریخ پذیرش: 28 خرداد 1402 | ||
چکیده | ||
در قوانین هدایت مبتنی بر نرخ زاویه خط دید، شتاب جانبی وسیله به گونهای تعیین میگردد که نرخ زاویه خط دید (بین جسم و هدف) صفر شود. با ثابت ماندن زاویه خط دید، اگر سرعت جسم از سرعت هدف بزرگتر باشد آنگاه جسم به هدف مورد انتظار به صورت مجانبی خواهد رسید. در این مقاله، به ارائه یک الگوریتم هدایت جدید مبتنی بر زاویه خط دید جهت استفاده در سیستمهای هدایت دو بعدی پرداخته شده است. بدین منظور، با توجه به روابط حاکم بر موضوع و استفاده از روابط مثلثاتی، قانون هدایت پیشنهادی به یک رابطه جبری منجر میگردد. اگر چه رویکرد به کار گرفته شده در این مساله هدایت، مستقل از نرخ زاویه خط دید میباشد، اما صفر شدن تغییرات زاویه خط دید با کمک منطق ارائه شده، در لحظه اعمال قانون هدایت رخ خواهد داد. قانون استخراج شده در یک مساله هدایت دو بعدی ارزیابی شده و مزیت راهحل پیشنهادی در مقایسه با روشهای دیگر نشان داده خواهد شد. | ||
کلیدواژهها | ||
قانون هدایت؛ زاویه خط دید؛ نرخ زاویه خط دید و مساله هدایت | ||
عنوان مقاله [English] | ||
A Guidance Approach Based on Line-of-sight Angle in Planar Guidance Problem | ||
نویسندگان [English] | ||
Valiollah Ghaffari1؛ Hasan Mohammadkhan2 | ||
1Persian Gulf University | ||
2Department of Aerospace Engineering, Imam Hossein University | ||
چکیده [English] | ||
In the guidance algorithms based on the line-of-sight (LOS) rate, the lateral acceleration commands are computed in such a way that the LOS rate is nullified. So, keeping constant the LOS angle, the condition in which the vehicle speed is greater than the target speed, the vehicle reaches the target position asymptotically. In this paper, a new guidance algorithm, based on the LOS angle, is presented for a typical guidance system. To this aim, considering the governed guidance equations and using the corresponding trigonometric relations, the proposed guidance law is transformed into an algebraic equation. Although the utilized guidance procedure is independent of the rate of LOS angle, the rate of LOS angle would equal zero instantly via applying the proposed method. Then, to illustrate the effectiveness of the idea, the derived mechanism is evaluated in a two-dimensional guidance problem. The advantages of the approach are shown in comparison with similar methods. | ||
کلیدواژهها [English] | ||
Guidance law, Line-of-sight angle, Rate of line-of-sight, Guidance problem | ||
مراجع | ||
##[1] V. Ghaffari and P. Karimaghaee, "Performance and Stability Investigation of a line of sight based Guidance System in the Presence of Measurement Noise," Journal of Space Science and Technology, vol. 11, no. 1, pp. 31-40, 2018.##[2] S. Talole, A. Ghosh, and S. Phadke, "Proportional navigation guidance using predictive and time delay control," Control Engineering Practice, vol. 14, no. 12, pp. 1445-1453, 2006.##[3] D. Zhou and B. Xu, "Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics," Journal of Guidance, Control, and Dynamics, vol. 39, no. 5, pp. 1155-1162, 2016.##[4] M. Guelman and J. Shinar, "Optimal guidance law in the plane," Journal of Guidance, Control, and Dynamics, vol. 7, no. 4, pp. 471-476, 1984.##[5] I.-J. Ha and S. Chong, "Design of a CLOS guidance law via feedback linearization," IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 1, pp. 51-63, 1992.##[6] J. Moon, K. Kim, and Y. Kim, "Design of missile guidance law via variable structure control," Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 659-664, 2001.##[7] H.-G. Kim and H. J. Kim, "Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view," IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 82-94, 2018.##[8] J. Guo, Y. Li, and J. Zhou, "A new continuous adaptive finite time guidance law against highly maneuvering targets," Aerospace Science and Technology, vol. 85, pp. 40-47, 2019.##[9] X. Chen and J. Wang, "Optimal control based guidance law to control both impact time and impact angle," Aerospace Science and Technology, vol. 84, pp. 454-463, 2019.##[10] Y. Sheng, Z. Zhang, and L. Xia, "Fractional-order sliding mode control based guidance law with impact angle constraint," Nonlinear Dynamics, vol. 106, no. 1, pp. 425-444, 2021.##[11] C. Wang, W. Dong, J. Wang, and J. Shan, "Nonlinear suboptimal guidance law with impact angle constraint: An SDRE-based approach," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4831-4840, 2020.##[12] D. Zhou, C. Mu, and T. Shen, "Robust guidance law with L2 gain performance," Transactions of the Japan Society for Aeronautical and Space Sciences, vol. 44, no. 144, pp. 82-88, 2001.##[13] A. Saleem and A. Ratnoo, "Lyapunov-based guidance law for impact time control and simultaneous arrival," Journal of Guidance, Control, and Dynamics, vol. 39, no. 1, pp. 164-173, 2016.##[14] D. Zhou, S. Sun, and K. L. Teo, "Guidance laws with finite time convergence," Journal of Guidance, Control, and Dynamics, vol. 32, no. 6, pp. 1838-1846, 2009.##[15] G. Li, M. Xin, and C. Miao, "Finite-time input-to-state stability guidance law," Journal of Guidance, Control, and Dynamics, vol. 41, no. 10, pp. 2199-2213, 2018.##[16] T. Binazadeh, M. H. Shafiei, and E. Bazregarzadeh, "New approach in guidance law design based on finite-time partial stability theorem," Journal of Space Science and Technology, vol. 8, no. 1, pp. 1-7, 2015.##[17] V. Behnam Gol, I. Mohammad Zaman, A. Vali, and N. A. Ghahramani, "Guidance law design using finite time second order sliding mode control," Journal of Control, vol. 5, no. 3, pp. 36-44, 2011.##[18] S. Xiong, W. Wang, X. Liu, S. Wang, and Z. Chen, "Guidance law against maneuvering targets with intercept angle constraint," ISA transactions, vol. 53, no. 4, pp. 1332-1342, 2014.##[19] s. khankalantary, m. hajizadeh, heidari, azem, and h. mohammadkhani, "Impact Time Guidance Law against Maneuvering Targets Using Sliding Mode Control," Amirkabir Journal of Mechanical Engineering, vol. 53, no. 2, pp. 913-922, 2021.##[20] C. Wang, X. Ding, J. Wang, and J. Shan, "A robust three-dimensional cooperative guidance law against maneuvering target," Journal of the Franklin Institute, vol. 357, no. 10, pp. 5735-5752, 2020.##[21] Y. Ji, D. Lin, W. Wang, S. Hu, and P. Pei, "Three-dimensional terminal angle constrained robust guidance law with autopilot lag consideration," Aerospace Science and Technology, vol. 86, pp. 160-176, 2019.##[22] S. Ebadollahi, M. Madani, and M. Golestani, "Guidance Law based on LMI-based Robust Model Predictive Control to Obtain Optimal LOS for Flying Vehicle," Tabriz Journal of Electrical Engineering vol. 48, no. 4, pp. 1645-1652, 2019.##[23] V. Ghaffari, "Model predictive guidance law design in a two-dimensional guidance problem in presence of Input constraint," Aerospace Knowledge and Technology Journal, vol. 8, no. 2, pp. 169-178, 2020.##[24] L. Lin and J. J. Zhu, "Line-of-sight pure pursuit guidance stability analysis and design guideline for car-like autonomous ground vehicles," in Dynamic Systems and Control Conference, 2019.##[25] R. Rout and B. Subudhi, "Design of line-of-sight guidance law and a constrained optimal controller for an autonomous underwater vehicle," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 416-420, 2020.##[26] N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, "Advances in Line-of-Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, doi: 10.1109/TSMC.2022.3162862.##[27] Z. Qian, W. Lyu, Y. Dai, and J. Xu, "A Consensus-Based Model Predictive Control with Optimized Line-of-Sight Guidance for Formation Trajectory Tracking of Autonomous Underwater Vehicles," Journal of Intelligent & Robotic Systems, vol. 106, no. 1, pp. 1-13, 2022.##[28] M. Zhang and J. Ma, "Adaptive fixed-time cooperative intercept guidance law with line-of-sight angle constraint," in International Conference on Mechatronics and Automation, 2019.##[29] G. M. Siouris, Missile guidance and control systems. Springer Science & Business Media, 2004.## | ||
آمار تعداد مشاهده مقاله: 59 تعداد دریافت فایل اصل مقاله: 72 |