تعداد نشریات | 38 |
تعداد شمارهها | 1,252 |
تعداد مقالات | 9,075 |
تعداد مشاهده مقاله | 8,183,245 |
تعداد دریافت فایل اصل مقاله | 4,941,289 |
بررسی پسای اصطکاکی در سکان مدل مجهز به میکروریبلت دندانهای با مقطع NACA0025 با استفاده از شبیه سازی عددی | ||
دوفصلنامه مهندسی شناورهای تندرو | ||
دوره 22، شماره 62، شهریور 1402، صفحه 33-45 اصل مقاله (1.53 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
غلامرضا صالحی1؛ پویان ادیبی2؛ سعید نیازی* 3؛ طالب زارعی4 | ||
1دانشجوی دکترای تبدیل انرژی دانشگاه هرمزگان | ||
2گروه مکانیک دانشکده فنی دانشگاه هرمزگان | ||
3گروه مهندسی مکانیک دانشگکده فنی دانشگاه هرمزگان بندرعباس ایران | ||
4گروه مهندسی مکانیک دانشکده فنی دانشگاه هرمزگان | ||
تاریخ دریافت: 22 تیر 1402، تاریخ بازنگری: 29 تیر 1402، تاریخ پذیرش: 19 مرداد 1402 | ||
چکیده | ||
چکیده: بحران انرژی و آلودگیهای زیست محیطی از چالشهای مهمی است که بشر در عصر حاضر با آن روبرو است. روبه پیاین بودن انرژیهای فسیلی نیز این اندیشیدن چارهای برای این چالشها را دوچندان مینماید. یکی از راههای کاهش مصرف انرژی پیدا کردن شناختن نیرویهای مقاوم و راههای غلبه کردن بر آنها میباشد. در صنعت حمل و نقل دریایی و جابجایی شناورها در دریا که بیش از 90 درصد حمل و نقل جهان را شامل میگردد، مقابله با نیروی مقاومی که بر شناورها و متعلقات آن از سوی آب وارد میشود. بررسی وضعیت کاهش پسا در متعلقات معمولا کمتر مورد توجه محققان قرار میگیرد. یکی از موارد مهمی است که در طراحی شناور باید مد نظر باشد. سکان از متعلقات زیرآبی در انواع شناورهای دریایی میباشد. کاهش نیروی پسا میتواند به کاهش مصرف سوخت و افزایش سرعت کاربری منجر گردد. در این پژوهش به مطالعه کاهش نیروی پسای وارد از سوی آب به سکان پرداخته شد. مطالعه موردی بر روی سکانی با مقطع NACA0025 بود. ریبلتها در چند نسبت مختلف بر روی هیدروفویل سکان ایجاد و نیروی پسای اعمال شده با استفاده از شبیهسازی عددی در نرمافزار استارسیسیام محاسبه گردید. نتایج حاکی از آن بود که در نسبت ارتفاع ریبلت صد میکرون و فاصله دویست میکرون، بیشترین میزان کاهش پسا به اندازه 5/12 درصد مشاهده گردید. واژه های کلیدی: ریبلت، پسا، نیروی مقاومت، هیدروفویل، میکروریبلت | ||
کلیدواژهها | ||
ریبلت؛ پسا؛ نیروی مقاومت؛ هیدروفویل؛ میکروریبلت | ||
عنوان مقاله [English] | ||
Investigating the Effect of Riblets on Frictional Drag Reduction on a Rudder Hydrofoil: A Numerical Simulation | ||
نویسندگان [English] | ||
Gholamreza Salehi1؛ pouyan adibi2؛ saeid niazi3؛ taleb zarei4 | ||
1Doctoral student of energy conversion, Hormozgan University | ||
2department of mecganical engineering faculty of engineering hormozgan university | ||
3Department of mechanical engineering hormozgan university bandar abbas iran | ||
4department of mechanical engineering, | ||
چکیده [English] | ||
Abstract: The energy and environmental crisis pose significant challenges to humanity, necessitating solutions to reduce energy consumption. In the marine transportation industry, where over 90% of global transportation occurs, addressing resistance forces acting on vessels and their components in water is crucial for efficient design.Researching the state of drag reduction in accessories usually receives less attention from researchers. It is one of the important things that should be considered in the design of the float. The rudder, an essential underwater accessory in marine vessels, plays a vital role in drag reduction, leading to improved fuel efficiency and performance. This research focuses on investigating the reduction of drag force exerted by water on a rudder with NACA0025 section. Riblets of varying dimensions are implemented on the rudder hydrofoil, and the resulting drag force is calculated using simulation in STAR CCM software. The findings reveal that a riblet height of 100 microns and a distance of 200 microns yield the maximum drag reduction of 12.5%. Keywords: riblet, drag, resistance force, hydrofoil, microriblet. | ||
کلیدواژهها [English] | ||
: riblet, drag, resistance force, hydrofoil, microriblet | ||
مراجع | ||
[1] Sajedi, S. M., and Ghadimi, P. Experimental and Numerical Assessment of the Effect of Transverse, Pointed Aft, and Re-entrant Vee Steps as well as Ventilation on Hydrodynamic Performance of Mono-hull Planing Crafts in Calm Water. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 46(3), pp.715–731, 2022. doi:https://doi.org/10.1007/s40997-022-00519-8.##[2] Najafi, A., Nowruzi, H., Ameri, M.J. and Karami, M. An experimental study of the wetted surfaces of two- stepped planing hulls. Ocean Engineering, 222, p. 108589, 2021. doi:https://doi.org/10.1016/j.oceaneng.2021.108589.##[3] Najafi, A., Nowruzi, H., and Ameri, M. J. Hydrodynamic assessment of stepped planing hulls using experiments. Ocean Engineering, 217, p.107939, 2020. doi:https://doi.org/10.1016/j.oceaneng.2020.107939.##[4] Nowruzi, H., and Najafi, A. An experimental and CFD study on the effects of different pre-swirl ducts on propulsion performance of series 60 ship. Ocean Engineering, [online] 173, pp.491–509, 2019.##[5] Najafi, A., Nowruzi, H., and Ghassemi, H. Performance prediction of hydrofoil- supported catamarans using experiment and ANNs. Applied Ocean Research, 75, pp.66–84, 2018. doi:https://doi.org/10.1016/j.apor.2018.02.017.##[6] Ghadimi, P., Sajedi, S. M., Ghadimi, A., and Sheikholeslami, M. R. Experimental and numerical probe into the effects of adding one and two steps to a mono-hull planing vessel on its performance in calm water. Scientia Iranica, 2021. doi:https://doi.org/10.24200/sci.2021. 57177.5101.##[7] Ghadimi, P., Sajedi, S. M., and Tavakoli, S. Experimental Study of the Wedge Effects on the Performance of a Hard-chine Planing Craft in Calm Water. Scientia Iranica, 0(0), 2018. doi:https://doi.org/10.24200/sci.2018.20607.##[8] Saraji, M. K., Aliasgari, E., Streimikiene, D. Assessment of the challenges to renewable energy technologies adoption in rural areas: a Fermatean CRITICVIKOR approach, Technical Forecasting and Social Change 189, 122399, 2023.##[9] Energy and Mineral Regulatory Commission (EMRC), https://emrc.gov.jo/, accessed on 10 Feb 2023 [in Arabic].##[10] Nchofoung, T.N., Fotio, H. K., Miamo, C. W. Green taxation and renewable energy technologies adoption: a global evidence, Renew. Energy Focus 44, 334–343 Volume2023ISSN 1755-0084, 2023. doi: 10.1016/j.ref.2023.01.010##[11] Erős, N., Török, Z., Hossu, C. A., Réti, K. O., Maloș, C., Kecskés, P., Morariu, S. D., Benedek, J., Hartel, T. Assessing the sustainability related concepts of urban devel- opment plans in Eastern Europe: a case study of Romania, Sustain. Cities Soc. 85, 104070 VolumeISSN 2210-6707, 2022. doi: 10.1016/j.scs.2022.104070##[12] Khan, A., Shah, I., Aziz, S., Waqas, M., Zaman, U. K. U., Jung, D. W. Numerical and Experimental Analysis of Drag and Lift Forces on a Bullet Head. Aerospace, 9, 816, 2022. https://doi.org/10.3390/ aerospace9120816##[13] Rahman, M. R. Computational Analysis of Aerodynamic Parameters for Supersonic Artillery Projectiles International journal of mechanical engineering. J. Mech. Civ. Eng, 6, 1–18, 2020.##[14] Croke, T. C., Thomas, F. O. Active and passive turbulent boundary-layer drag reduction, AIAA J. 56 (10), 3835– 3847, 2018.##[15] Cecil, S. L. Friction drag reduction of external flows with bubble and gas injection, Annu. Rev. Fluid Mech. 42, 183–203, 2009.##[16] Krope, A., and Lipus, L. C. Drag reducing surfactants for district heating, Appl. Therm. Eng. 30 (8), 833–838, 2010.##[17] Zheng, X. B., Jiang, N., and Zhang, H. redetermined control of turbulent boundary layer with a piezoelectric oscillator, Chin. Phys. B 25 (1), 014703, 2016.##[18] Wang, X. TRPIV Experimental research of drag reduction mechanism by a riblet surface, Tianjin University, Tianjin, 2017.##[19] White, C. M., and Mungal, M. G. Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech. 40, 235–256, 2008.##[20] Shokry, F., Abd Elfattah, M., El-Gayar, D. A., et al. Effect of drag reducing polymers and impeller geometry on the rate of mass Fig. 17 The relation between vortexes and.sc and heat transfer at the wall of a cylindrical stirred tank reactor in relation to catalytic reactor design, Alexandria Eng. J. 59 (1), 509–518, 2020.##[21] Lai, S. C. S. Mimicking nature: physical basis and artificial synthesis of the lotus-effect, University of Leiden, Friesland, 2003.##[22] Huey, J. C., Gene, E. K., Michael, S. F., et al, DRA for gas pipelining successful in gulf of mexico trial, Oil Gas J. 98 (23), 54–58, 2000.##[23] Mitchell Quinn, Dylan McGrath, Duncan C. Bell, Henry C. Bilinsky, Joseph Builth-Williams, Christoph Feichtinger, Peter A. Leitl, Andreas Flanschger and Shahfiq Shahjahan. "Advancements in Drag-Reducing Riblet Film Production for Aviation and Other Applications," AIAA 2022-0920. AIAA SCITECH 2022 Forum. January 2022.##[24] Hu, j., and Yao, Zh. Drag reduction of turbulent boundary layer over sawtooth riblet surface with superhydrophobic coat. Physics of Fluids 1 January, 35 (1): 015104, 2023. https://doi.org/10.1063/5.0132403##[25] Chan, Kevin, L. Skvortsov, A., and Ooi, A. Effect of straight riblets of the underlying surface on wall bounded flow drag, International Journal of Heat and Fluid Flow, Volume 102, 109160, ISSN 0142-727X, 2023. https://doi.org/10.1016/j.ijheatfluidflow.2023.109160. (https://www.sciencedirect.com/science/article/pii/S0142727X23000590).##[26] Chan, Kevin, L. Skvortsov, A., and Ooi, A. Effect of straight riblets of the underlying surface on wall bounded flow drag, International Journal of Heat and Fluid Flow, Volume 102, 109160, ISSN 0142-727X, 2023. https://doi.org/10.1016/j.ijheatfluidflow.2023.109160.##[27] Cafiero, G., and Iuso, G. Drag reduction in a turbulent boundary layer with sinusoidal riblets, Experimental Thermal and Fluid Science, Volume 139, 110723, ISSN 0894-1777, 2022. https://doi.org/10.1016/j.expthermflusci.2022.110723.##[28] Soleimani, Sh. and, Eckels, S. A review of drag reduction and heat transfer enhancement by riblet surfaces in closed and open channel flow, International Journal of Thermofluids, Volume 9, 100053, ISSN 2666-2027, 2021. https://doi.org/10.1016/j.ijft.2020.100053.Volume 9,2021, 100053, ISSN 2666-2027,##[29] Gordon, J. E. The new science of strong materials, or why you don’t fall through the fl oor, 2 nd Ed., Pelican–Penguin, London, UK 1976.##[30] Design and Nature II Comparing Design in Nature with Science and Engineering (Eds: M. W. Collins, C. A. Brebbia), WIT Press, Southampton, UK 2004.##[31] Learning from Nature How to Design New Implantable Biomaterials (Eds: R. L. Reis, S. Weiner), Kluwer Academic Publishers, Norwell, MA 2004.##[32] Bhushan, B. Philos. Trans. R. Soc, 367, 1445, 2009.##[33] Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany 2012.##[34] Bulletproof Feathers How Science Uses Nature’s Secrets to Design Cutting Edge Technology, (Ed: R. Allen), Ivy Press, London 2010.##[35] Bio-Inspired Innovation and National Security (Eds: R. E. Armstrong, M. D. Drapeau, C. A. Loeb, J. J. Valdes), National Defense University Press, Washington, DC 2010.##[36] Bar-Cohen, Y. Biomimetics: Nature Based Innovation, CRC Press, Boca Raton, FL 2011.##[37] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge 1970.##[38] Blevins, R. D. Applied Fluid Dynamics Handbook, Van Nostrand- Reinhold, New York 1984.##[39] Standard Handbook for Aeronautical and Astronautical Engineers (Ed: M. Davies), McGraw-Hill, New York 2002.##[40] White, F. Viscous Fluid Flow, 3 rd ed., McGraw Hill, New York 2006.##[41] Fox, R. W. and McDonald, A. T. Introduction to Fluid Mechanics, 11 th Ed. John Wiley & Sons, New York 2011.##[42] Fu, Y.F., Yuan, C.Q. and Bai, X.Q. caramsurfaces. Biosurface and Biotribology, 3(1), pp.11–24, 2017. doi:https://doi.org/10.1016/j.bsbt.2017.02.001.##[43] Sayad Saravi, S., and Cheng, K. A Review of drag reduction by riblet and micro-textures in the turbulent boundary. European Scientific Journal, 9(33), 2013.doi:https://doi.org/10.19044/ESJ. 2013. V9 N33P.##[44] Boomsma, A., and Sotiropoulos, F. Direct numerical simulation of shark skin denticles in turbulent channel flow. Physics of Fluids 28, 035106, 2016.##[45] Bixler, G. D., and Bhushan, B. Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces. Advanced Functional Materials, 23(36), 4507–4528, 2013.https://doi.org/10.1002/adfm.201203683.##[46] Bliamis, C., Vlahostergios, Z., Misirlis, D., Yakinthos, K. Numerical Evaluation of Riblet Drag Reduction on a MALE UAV. 9, 218, Aerospace 2022. https://doi.org/10.3390/aerospace9040218##[47] Caretto L. S., Gosman A. D., Patnakar S. V., and Spalding, D. B. Two Calculation Procedures for Steady, Three-Dimensional Flows With Recirculation, 1972.##[48] Bixler, G. D., and Bhushan, B. Biofouling: lessons from nature. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1967): p. 2381-2417, 2012.##[49] Heydarian, A., Rishehri, M., Dehghanian, A. and Kazemipour, A. Numerical Simulation of the Effects of Micro Riblets on Hydrodynamics Parameters of Planning Vessels. High Speed craft, 15(48), pp.42–50, 2016. [in Persian]##[50] Han, M., Lim, H. C., Jang, Y. G., Seung, S. L., Lee, S. J. Paper # 0-7803-7731-1, presented at 12 th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, MA 2003.##[51] Caram, J. M., Ahmed, A. Am. Inst. Aeronaut. Astronaut. J. 1991, 29, 1769.##[52] Sundaram, S., Viswanath, P. R., Rudrakumar, S. Am. Inst. Aeronaut Astronaut. J. 34, 676.##[53] Gu, Y., Fan, T., Mou, J., Wu, D., Zheng, S. and Wang, E. Characteristics and mechanism investigation on drag reduction of oblique riblets. Journal of Central South University, 24(6), pp.1379–1386, 2017.doi:https://doi.org/10.1007/s11771-017-3542-5.##[54] Rohr, J. J., Andersen, G. W., Reidy, L.W., Hendricks, E. W. A comparison of the dragreducingbenefits of riblets in internal and external flows, Exp. Fluids 13 (6), 361–368, 1992. | ||
آمار تعداد مشاهده مقاله: 137 تعداد دریافت فایل اصل مقاله: 193 |