تعداد نشریات | 38 |
تعداد شمارهها | 1,240 |
تعداد مقالات | 8,994 |
تعداد مشاهده مقاله | 7,848,168 |
تعداد دریافت فایل اصل مقاله | 4,708,284 |
معرفی یک روش کارا جهت شناسایی الگوی نویزی بالگردها مبتنی بر بردار ویژگی مساحت و طبقه بند نمایش تنک وزن دار | ||
پدافند الکترونیکی و سایبری | ||
مقاله 4، دوره 12، شماره 1 - شماره پیاپی 45، خرداد 1403، صفحه 33-42 اصل مقاله (1.13 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمّدسعید علمداری1؛ مسعود فاطمی2؛ محسن شاهرضایی3 | ||
1دانشجوی دکتری، دانشگاه خواجه نصیر الدین طوسی، تهران، ایران | ||
2دانشیار،دانشگاه خواجه نصیر الدین طوسی، تهران، ایران. | ||
3دانشیار، دانشگاه امام حسین علیه السلام، تهران، ایران | ||
تاریخ دریافت: 25 دی 1402، تاریخ بازنگری: 20 فروردین 1403، تاریخ پذیرش: 15 اردیبهشت 1403 | ||
چکیده | ||
سیستمهای هدف یاب و شناسایی الگو سیستمهایی هستند که کاربردهای دفاعی و امنیتی در حوزه های نظامی دارند. مهمترین مزیت استفاده از این سیستمها حذف نقش انسان در فرایندهای شناسایی است و میتواند اهدافی مانند تانک، خودرو، کشتی، بالگرد و ... را مورد پردازش قرار دهد. در سیستم شناسایی الگو تصویر ورودی توسط یکی از سنسورهای تصویر برداری از قبیل رادار امواج میلیمتری، رادار لیزری، دوربین ویدئویی یا دوربین مادون قرمز حاصل میشود و پس از پیشپردازش اولیه مراحل استخراج و انتخاب ویژگی و در نهایت طبقهبند صورت میپذیرد. در این مقاله روشی کارا درخصوص شناسایی الگوی نویزی بالگردها مبتنی بر بردار ویژگی مساحت و طبقهبند نمایش تنک معرفی میشود. روش پیشنهادی شامل سه مرحله پیشپردازش، شناسایی و طبقهبند میباشد. در مرحله پیشپردازش با اعمال الگوریتمهای پردازش تغییراتی به منظور بهبود کیفیت تصاویر دریافتی و حذف دادههای نامرتبط (نویز) انجام میگیرد. سپس در مرحله شناسایی، بردار ویژگی 32 مؤلفهای براساس ویژگیهای شکلی، سطحی و طولی در نظر گرفته میشود که در روش ارائه شده در این مقاله، فقط ویژگیهای سطحی مورد استفاده قرار میگیرند و ویژگیهای شکلی و طولی بدلیل عدم کارایی کنار گذاشته میشوند و در نهایت در مرحله سوم از نمایش تنک وزندار برای طبقهبند استفاده میشود. اعمال سه مرحله فوق منجر به کاهش زمان الگوریتم و افزایش دقت روش در شناسایی بالگردها میشود. برای بررسی عملکرد روش پیشنهادی در مقایسه با سایر روشها، پایگاه داده 60 تصویر مختلف بالگردها مورد بررسی قرار گرفت و روش پیشنهادی موفق به بالاترین نرخ شناسایی برابر 3/96 درصد شد. از طرفی روش ارائه شده کمترین پیچیدگی زمانی را در میان روشها دارد که نشانگر سرعت بالای آن میباشد. | ||
کلیدواژهها | ||
شناسایی الگو؛ بردار ویژگی مساحت؛ طبقه بند نمایش تُنُک وزن دار؛ نُرم صفر هموار شده | ||
موضوعات | ||
پردازش سیگنال حوزه های مرتبط | ||
عنوان مقاله [English] | ||
Introducing an efficient method to identify the noise pattern of helicopters based on the area feature vector and weighted sparse representation classification | ||
نویسندگان [English] | ||
Mohammad Saeid Alamdari1؛ Masoud Fatemi2؛ Mohsen Shahrezaei3 | ||
1PhD student, Khwaja Nasiruddin Toosi University, Tehran, Iran | ||
2Associate Professor, Khwaja Nasiruddin Toosi University, Tehran, Iran. | ||
3Associate Professor, Imam Hossein University, Tehran, Iran | ||
چکیده [English] | ||
Target finding and pattern recognition systems are systems that have defense and security applications in military fields. The most important advantage of using these systems is eliminating the role of humans in identification processes, such as tanks, cars, ships, helicopters, etc. In the pattern recognition system, the input image is obtained by one of the imaging sensors such as millimeter wave radar, laser radar, video camera or infrared camera, and after initial preprocessing, feature extraction and feature selection and finally classification are done. In this article, an effective method for identifying the noise pattern of helicopters based on the area feature vector and weighted sparse representation classification is introduced. The proposed method includes three steps: preprocessing, identification and classification. In the preprocessing stage, changes are made by applying processing algorithms in order to improve the quality of received images and remove irrelevant data (noise). Then, in the identification stage, a 32-component feature vector is considered based on shape, surface and length features, which in the method presented in this article, only surface features are used and the shape and length features are discarded due to lack of efficiency, and finally, in the third stage, thin weighted representation is used for classification. Applying the above three steps leads to reducing the time of the algorithm and increasing the accuracy of the method in identifying helicopters. To check the performance of the proposed method compared to other methods, the database of 60 different images of helicopters was examined and the proposed method achieved the highest recognition rate of 96.3%. On the other hand, the presented method has the least time complexity among the methods, which indicates its high speed. | ||
کلیدواژهها [English] | ||
Pattern Recognition, Area Feature Vector, Weighted Sparse Representation Classification, Smoothed l0 Norm | ||
مراجع | ||
[2] T.P. Wallace and P.A. Wintz, “An Efficient Three-Dimensional Aircraft Recognition Algorithm Using Normalized Fourier Descriptors,” Computer Graphics and Image Processing, vol. 13, pp. 99-126, 1980, DOI: 10.1016/S0146-664X(80)80035-9. [3] J.W. Gorman, O.R. Mitchell and F.P. Kuhl, “Partial Shape Recognition Using Dynamic Programming,” IEEE Transaction on Pattern Analysis and Machin Intelligence, vol. 10, 1988, DOI: 10.1109/34.3887. [4] M. Alsultanny and Y. Abbas, “Pattern Recognition Using Multilayer Neural Genetic Algorithm,” Neurocomputing, vol. 51, pp. 237-247, 2003, DOI: 10.1016/S0925-2312(02)00619-7. [5] C.M. Bishop, “Neural Nerworks for Pattern Recognition,” Oxford University Press, 1995, ISBN: 978-0195667998. [6] M. Shahrezaee and M. S. Alamdari, “The Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method, Journal of Mathematical Research,” pp. 51–60, 2015, DOI: 10.29252/mmr.1.2.51. [7] M.S. Alamdari, M. Fatemi, and A. Ghaffari, “A modified sequential quadratic programming method for sparse signal recovery problems,” Signal Processing, vol. 207, pp. 108955, 2023, DOI: 10.1016/j.sigpro.2023.108955. [8] S. Huang, H. Zhang and A. Pižurica, “A robust sparse representation model for hyperspectral image classification,” Sensors, vol. 17, no. 9, 2017, DOI: 10.3390/s17092087. [9] M. S. Alamdari, M. Fatemi, A. Ghaffari, “The Recovery of Sparse Signals by Sequential Quadratic Programming Approach,” Journal of Operational Research and Its Applications, pp. 19–32, 2023, DOI: 10.21018/jamlu. 2023.1932.21. [10] M. S. Alamdari and M. Fatemi, “Presenting a new method to separate fetal heart signals from the mother by using sequential quadratic programming,” Journal of Advanced Mathematical Modeling, pp. 153–167, 2023, DOI: 10.22055/jamm.2023.43652.2157. [11] M. S. Alamdari, “Providing an optimal mathematical model based on sparse display to improve image reconstruction,” Journal of New Researches in Mathematics, 2023, DOI:10.30495/jnrm.2023.73817.242. [12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on smoothed norm,” IEEE Trans. Signal Process., vol. 57, pp. 289-301, 2009, DOI: 10.1109/TSP.2008. 2007606. [13] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma, “Robust face recognition via sparse representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, no. 2, pp. 210–227, February 2009, DOI: 10.1109/TPAMI. 2008.79. [14] J. Yin, et al., “Kernel sparse representation based classification,” vol. 77, no. 1, pp. 120-128, 2012, DOI: 10.1016/j.neucom.2011.08.018. [15] L. Zhang, et al., “Kernel sparse representation-based classifier,” Signal Processing, IEEE Transactions on, pp. 1684-1695, 2012, DOI: 10.1109/TSP.2011. 2179539. [16] C. Lu, et al., “Face recognition via weighted sparse representation,” Journal of Visual Communication and Image Representation, vol. 24, no. 2, pp. 111-116, 2013, DOI: 10.1016/j.jvcir.2012.05.003. [17] D. L. Donoho, and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc of the National Acadmy of Sciences, vol. 100, no. 5, 2003, DOI: 10.1073/pnas.0437847100. [18] M. Babaie-Zadeh, B. Mehrdad, and G.B. Giannakis, “Weighted sparse signal decomposition. in Acoustics,” IEEE International Conference, 2012, DOI: 10.1109/ICASSP. 2012.6288652. [19] K. Ma, R. J. Jannorone and J. W. Gorman, “FAST: parallel airplane pattern recognition,” Proceedings. The Twenty-Second Southeastern Symposium on System Theory, Cookeville, TN, USA, pp. 7-11, 1990.
| ||
آمار تعداد مشاهده مقاله: 1,086 تعداد دریافت فایل اصل مقاله: 136 |