تعداد نشریات | 38 |
تعداد شمارهها | 1,258 |
تعداد مقالات | 9,115 |
تعداد مشاهده مقاله | 8,324,446 |
تعداد دریافت فایل اصل مقاله | 5,039,460 |
رمزنگاری تصویر با استفاده از بیومتریک چهره و الگوریتم فراابتکاری بر روی سیستم زنجیرهبلوکی | ||
پدافند الکترونیکی و سایبری | ||
مقاله 6، دوره 12، شماره 2 - شماره پیاپی 46، شهریور 1403، صفحه 67-83 اصل مقاله (1.47 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمد گنجعلیخان حاکمی1؛ محمدجواد رستمی* 2 | ||
1کارشناسی ارشد، دانشگاه شهیدباهنر، کرمان ، ایران | ||
2دانشیار، دانشگاه شهیدباهنر، کرمان ، ایران | ||
تاریخ دریافت: 08 اردیبهشت 1403، تاریخ بازنگری: 29 تیر 1403، تاریخ پذیرش: 12 مرداد 1403 | ||
چکیده | ||
با گسترش شبکه اینترنت و دسترسی همگانی به این شبکه، میزان تبادل اطلاعات و دادهها روزبهروز افزایش مییابد؛ بنابراین، امکان دسترسی غیرمجاز به اطلاعاتی که مبادله میشوند وجود خواهد داشت. از طرفی تقریباً تمام برنامههایی که بر بستر اینترنت اجرا میشوند، مانند شبکههای اجتماعی، دسترسی کامل به تصاویر و محتوای ذخیرهشده در دستگاه میزبان را دارا هستند؛ بنابراین امکان دسترسی غیرمجاز و سرقت اطلاعات شخصی وجود دارد. ازاینرو باید امنیت و صحت اطلاعات تضمین شود. بهمنظور حفظ محرمانگی دادهها میتوان از روشهای رمزنگاری اطلاعات، مانند الگوریتمهای رمزنگاری تصویر استفاده کرد. در روش پیشنهادی این مقاله کلید الگوریتم رمزنگاری به کمک اطلاعات استخراجشده از چهره فرد، چکیده تصویر و کلید عمومی ایجاد میشود، بنابراین الگوریتم رمزنگاری نسبت به تغییر هر کدام از اطلاعات استفاده شده در تولید کلید حساسیت بالایی خواهد داشت. برای رمزنگاری تصویر در فاز جانشینی از نگاشت آشوب لورنز استفاده میشود. هر کانال رنگ تصویر به چهار قسمت تقسیم میشود و هر قسمت با استفاده از یک دنباله شبهتصادفی مجزا رمزنگاری میشود و تصویر رمز شده تولید میشود. در فاز جایگشت بهمنظور دستیافتن به بهترین تصویر رمز شده، از الگوریتم فراابتکاری ژنتیک (GA) استفاده میشود تا با انتخاب پارامترهای بهینه برای نگاشت آشوب آرنولد، مقدار همبستگی پیکسلهای تصویر رمزنگاری شده به حداقل مقدار ممکن نزدیک شود. باتوجهبه نتایج بهدستآمده، مقادیر همبستگی پیکسلها در هر سه جهت افقی، عمودی و قطری نسبت به سایر روشهای ارائه شده مشابه بسیار کوچکتر است و الگوریتم رمزنگاری توانسته است به طور چشمگیری همبستگی و ارتباط بین پیکسلها را کاهش دهد. همچنین باتوجهبه نتایج تحلیل تفاضلی NPCR و UACI، برای تمام تصاویر آزمایش شده به ترتیب بالاتر از 6/99 درصد و 4/33 درصد است؛ بنابراین روش پیشنهادی دارای مقاومت بالایی نسبت به حملات آماری و تفاضلی خواهد داشت. همچنین برای فرآیند رمزگشایی تصویر، از احراز هویت دومرحلهای و نگهداری ایمن کلید رمزنگاری در شبکه زنجیرهبلوکی استفاده میشود. | ||
کلیدواژهها | ||
رمزنگاری تصویر؛ نگاشت آشوب؛ الگوریتم ژنتیک؛ احراز هویت؛ زنجیرهبلوکی | ||
موضوعات | ||
امنیت داده | ||
عنوان مقاله [English] | ||
Image encryption using face biometric and metaheuristic algorithm over blockchain system | ||
نویسندگان [English] | ||
MOHAMMAD Ganjalikhan Hakemi1؛ MOHAMMADJAVAD Rostami2 | ||
1Master's degree, Shahid Bahaner University, Kerman, Iran | ||
2Associate Professor, Shahid Bahnar University, Kerman, Iran | ||
چکیده [English] | ||
With the expansion of the Internet network and public access to this network, the amount of information and data exchange increases day by day; Therefore, there will be a possibility of unauthorized access to the information that is exchanged. On the other hand, almost all programs that run on the Internet, such as social networks, have full access to images and content stored on the host device; Therefore, there is a possibility of unauthorized access and theft of personal information. Therefore, the security and accuracy of information must be guaranteed. In order to maintain the confidentiality of data, information encryption methods, such as image encryption algorithms, can be used. In the proposed method of this article, the encryption algorithm key is created with the help of information extracted from the person's face, image abstract, and public key so that the encryption algorithm will be highly sensitive to the change of any of the information used in key generation. Lorenz chaos mapping is used for image encryption in the substitution phase. Each color channel of the image is divided into four parts and each part is encrypted using a separate pseudo-random sequence and the encrypted image is produced. In the permutation phase, to achieve the best-encoded image, the genetic heuristic algorithm (GA) is used to bring the pixel correlation value of the encoded image to the minimum possible value by choosing the optimal parameters for the Arnold chaos mapping. According to the obtained results, the correlation values of pixels in all three horizontal, vertical, and diagonal directions are much smaller than other similar presented methods and the encryption algorithm has been able to significantly reduce the correlation and connection between pixels. Also, according to the results of NPCR and UACI differential analysis, it is higher than 99.6% and 33.4% for all the tested images, respectively. Therefore, the proposed method will have high resistance to statistical and differential attacks. Also, for the process of decoding the image, two-step authentication and safe storage of the encryption key are used in the blockchain network. | ||
کلیدواژهها [English] | ||
Image encryption, Chaos, Genetic algorithm, Blockchain, Face detection, Authentication | ||
مراجع | ||
[1]. M. Turculeţ, “Ethical Issues Concerning Online Social Networks,” Procedia Soc Behav Sci, vol. 149, pp. 967–972, 2014, doi: https://doi.org/10.1016/j.sbspro.2014.08.317. [2]. S. Lian, Multimedia content encryption: techniques and applications. Auerbach Publications, 2008. [3]. X. Wang, L. Feng, and H. Zhao, “Fast image encryption algorithm based on parallel computing system,” Inf Sci (N Y), vol. 486, pp. 340–358, Jun. 2019, doi: 10.1016/J.INS.2019.02.049. [4]. H. Wang, D. Xiao, X. Chen, and H. Huang, “Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map,” Signal Processing, vol. 144, pp. 444–452, Mar. 2018, doi: 10.1016/J.SIGPRO.2017.11.005. [5]. D. R. I. M. Setiadi, S. Rustad, P. N. Andono, and G. F. Shidik, “Digital image steganography survey and investigation (goal, assessment, method, development, and dataset),” Signal Processing, vol. 206, p. 108908, May 2023, doi: 10.1016/J.SIGPRO.2022.108908. [6]. H. Ghadirli, A. Nodehi, R. E.-S. Processing, and undefined 2019, “An overview of encryption algorithms in color images,” Elsevier, vol. 164, pp. 163–185, 2019, doi: 10.1016/j.sigpro.2019.06.010. [7]. X. Wang and M. Zhao, “An image encryption algorithm based on hyperchaotic system and DNA coding,” Opt Laser Technol, vol. 143, p. 107316, Nov. 2021, doi: 10.1016/J.OPTLASTEC.2021.107316. [8]. S. Ma, Y. Zhang, Z. Yang, J. Hu, and X. Lei, “A New Plaintext-Related Image Encryption Scheme Based on Chaotic Sequence,” IEEE Access, vol. 7, pp. 30344–30360, 2019, doi: 10.1109/ACCESS.2019.2901302. [9]. X. J. Tong, M. Zhang, Z. Wang, Y. Liu, H. Xu, and J. Ma, “A fast encryption algorithm of color image based on four-dimensional chaotic system,” J Vis Commun Image Represent, vol. 33, pp. 219–234, Nov. 2015, doi: 10.1016/J.JVCIR.2015.09.014. [10]. N. Khalil, A. Sarhan, and M. A. M. Alshewimy, “An efficient color/grayscale image encryption scheme based on hybrid chaotic maps,” Opt Laser Technol, vol. 143, p. 107326, Nov. 2021, doi: 10.1016/J.OPTLASTEC.2021.107326. [11]. T. Wang and M. hui Wang, “Hyperchaotic image encryption algorithm based on bit-level permutation and DNA encoding,” Opt Laser Technol, vol. 132, p. 106355, Dec. 2020, doi: 10.1016/J.OPTLASTEC.2020.106355. [12]. S. Zhou, “A real-time one-time pad DNA-chaos image encryption algorithm based on multiple keys,” Opt Laser Technol, vol. 143, p. 107359, Nov. 2021, doi: 10.1016/J.OPTLASTEC.2021.107359. [13]. J. Zhou, N.-R. Zhou, and L.-H. Gong, “Fast color image encryption scheme based on 3D orthogonal Latin squares and matching matrix,” Opt Laser Technol, vol. 131, p. 106437, Nov. 2020, doi: 10.1016/J.OPTLASTEC.2020.106437. [14]. D. Zhang, L. Chen, and T. Li, “Hyper-Chaotic Color Image Encryption Based on Transformed Zigzag Diffusion and RNA Operation,” Entropy 2021, Vol. 23, Page 361, vol. 23, no. 3, p. 361, Mar. 2021, doi: 10.3390/E23030361. [15]. H. Liu and A. Kadir, “Asymmetric color image encryption scheme using 2D discrete-time map,” Signal Processing, vol. 113, pp. 104–112, Aug. 2015, doi: 10.1016/J.SIGPRO.2015.01.016. [16]. X. Chai, X.-L. Chai, Z.-H. Gan, Y. Lu, M.-H. Zhang, and Y.-R. Chen, “A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system,” iopscience.iop.org, vol. 25, no. 10, p. 100503, 2016, doi: 10.1088/1674-1056/25/10/100503. [18]. Q. Zhang and J. Han, “A novel color image encryption algorithm based on image hashing, 6D hyperchaotic and DNA coding,” Multimed Tools Appl, vol. 80, no. 9, pp. 13841–13864, Apr. 2021, doi: 10.1007/S11042-020-10437-Z/METRICS. [19]. S. Zhou, X. Wang, Y. Zhang, B. Ge, M. Wang, and S. Gao, “A novel image encryption cryptosystem based on true random numbers and chaotic systems,” Multimed Syst, vol. 28, no. 1, pp. 95–112, Feb. 2022, doi: 10.1007/S00530-021-00803-8. [20]. R. Enayatifar, H. J. Sadaei, A. H. Abdullah, M. Lee, and I. F. Isnin, “A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata,” Opt Lasers Eng, vol. 71, pp. 33–41, Aug. 2015, doi: 10.1016/J.OPTLASENG.2015.03.007. [21]. R. Enayatifar, A. H. Abdullah, and M. Lee, “A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption,” Opt Lasers Eng, vol. 51, no. 9, pp. 1066–1077, Sep. 2013, doi: 10.1016/J.OPTLASENG.2013.03.010. [22]. S. Noshadian, A. Ebrahimzade, and S. J. Kazemitabar, “Optimizing chaos based image encryption,” Multimed Tools Appl, vol. 77, no. 19, pp. 25569–25590, Oct. 2018, doi: 10.1007/S11042-018-5807-X. [23]. A. H. Abdullah, R. Enayatifar, and M. Lee, “A hybrid genetic algorithm and chaotic function model for image encryption,” AEU - International Journal of Electronics and Communications, vol. 66, no. 10, pp. 806–816, Oct. 2012, doi: 10.1016/J.AEUE.2012.01.015. [24]. Y. Q. Zhang, Y. He, P. Li, and X. Y. Wang, “A new color image encryption scheme based on 2DNLCML system and genetic operations,” Opt Lasers Eng, vol. 128, p. 106040, May 2020, doi: 10.1016/J.OPTLASENG.2020.106040. [25]. X. Chai, X. Zhi, Z. Gan, Y. Zhang, Y. Chen, and J. Fu, “Combining improved genetic algorithm and matrix semi-tensor product (STP) in color image encryption,” Signal Processing, vol. 183, p. 108041, Jun. 2021, doi: 10.1016/J.SIGPRO.2021.108041. [26]. L. S. Khan, M. M. Hazzazi, M. Khan, and S. S. Jamal, “A novel image encryption based on rossler map diffusion and particle swarm optimization generated highly non-linear substitution boxes,” Chinese Journal of Physics, vol. 72, pp. 558–574, Aug. 2021, doi: 10.1016/J.CJPH.2021.03.029. [27]. Z. Feixiang, L. Mingzhe, W. Kun, and Z. Hong, “Color image encryption via Hénon-zigzag map and chaotic restricted Boltzmann machine over Blockchain,” Opt Laser Technol, vol. 135, p. 106610, Mar. 2021, doi: 10.1016/J.OPTLASTEC.2020.106610. [28]. R. Li, “Fingerprint-related chaotic image encryption scheme based on blockchain framework,” Multimed Tools Appl, vol. 80, no. 20, pp. 30583–30603, Aug. 2021, doi: 10.1007/S11042-020-08802-Z/METRICS. [29]. G. Boeing, “Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction,” Systems 2016, Vol. 4, Page 37, vol. 4, no. 4, p. 37, Nov. 2016, doi: 10.3390/SYSTEMS4040037. [30]. N. A. Abbas, “Image encryption based on Independent Component Analysis and Arnold’s Cat Map,” Egyptian Informatics Journal, vol. 17, no. 1, pp. 139–146, Mar. 2016, doi: 10.1016/J.EIJ.2015.10.001. [31]. G. Qu et al., “Optical color image encryption based on Hadamard single-pixel imaging and Arnold transformation,” Opt Lasers Eng, vol. 137, p. 106392, Feb. 2021, doi: 10.1016/J.OPTLASENG.2020.106392. [32]. E. N. Lorenz, “Deterministic Nonperiodic Flow,” J Atmos Sci, vol. 20, no. 2, pp. 130–141, Mar. 1963, doi: 10.1175/1520-0469(1963)020. [33]. S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/S11042-020-10139-6/FIGURES/8. [34]. A. Bodo, “Method for producing a digital signature with aid of a biometric feature,” German patent DE, vol. 42, no. 43, p. 908, 1994. [35]. V. Kakkad, M. Patel, and M. Shah, “Biometric authentication and image encryption for image security in cloud framework,” Multiscale and Multidisciplinary Modeling, Experiments and Design, vol. 2, no. 4, pp. 233–248, Dec. 2019, doi: 10.1007/S41939-019-00049-Y/METRICS. [36]. C. Bisogni, G. Iovane, R. E. Landi, and M. Nappi, “ECB2: A novel encryption scheme using face biometrics for signing blockchain transactions,” Journal of Information Security and Applications, vol. 59, p. 102814, Jun. 2021, doi: 10.1016/J.JISA.2021.102814. [37]. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005, doi: 10.1109/CVPR.2005.177. [38]. O. Déniz, G. Bueno, J. Salido, and F. De La Torre, “Face recognition using Histograms of Oriented Gradients,” Pattern Recognit Lett, vol. 32, no. 12, pp. 1598–1603, Sep. 2011, doi: 10.1016/J.PATREC.2011.01.004. [39]. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,” IEEE Signal Process Lett, vol. 23, no. 10, pp. 1499–1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342. [40]. F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07-12-June-2015, pp. 815–823, Oct. 2015, doi: 10.1109/CVPR.2015.7298682. [41]. H. M. Ghadirli, A. Nodehi, and R. Enayatifar, “An overview of encryption algorithms in color images,” Signal Processing, vol. 164, pp. 163–185, Nov. 2019, doi: 10.1016/J.SIGPRO.2019.06.010. [42]. M. Kaur and V. Kumar, “A Comprehensive Review on Image Encryption Techniques,” Archives of Computational Methods in Engineering, vol. 27, no. 1, pp. 15–43, Jan. 2020, doi: 10.1007/S11831-018-9298-8/METRICS. [43]. M. Essaid, I. Akharraz, A. Saaidi, and A. Mouhib, “A New Image Encryption Scheme Based on Confusion-Diffusion Using an Enhanced Skew Tent Map,” Procedia Comput Sci, vol. 127, pp. 539–548, Jan. 2018, doi: 10.1016/J.PROCS.2018.01.153. | ||
آمار تعداد مشاهده مقاله: 287 تعداد دریافت فایل اصل مقاله: 10 |