تعداد نشریات | 38 |
تعداد شمارهها | 1,247 |
تعداد مقالات | 9,024 |
تعداد مشاهده مقاله | 7,932,603 |
تعداد دریافت فایل اصل مقاله | 4,748,571 |
طراحی و بهینهسازی آیرودینامیکی کمپرسور 10 مرحلهای و فن 3 مرحلهای یک موتور توربوفن با نسبت کنارگذر کم | ||
مکانیک سیالات و آیرودینامیک | ||
مقاله 10، دوره 13، شماره 1 - شماره پیاپی 33، مرداد 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مصطفی محمودی* 1؛ جاماسب پیرکندی2؛ مهدی جهرمی3 | ||
1دانشیار، دانشگاه صنعتی مالک اشتر،تهران،ایران | ||
2دانشیار، دانشگاه صنعتی مالک اشتر،تهران، ایران | ||
3استادیار، دانشگاه صنعتی مالک اشتر،تهران،ایران | ||
تاریخ دریافت: 16 اردیبهشت 1403، تاریخ بازنگری: 18 خرداد 1403، تاریخ پذیرش: 16 تیر 1403 | ||
چکیده | ||
در این مطالعه، بخش تراکم یک موتور توربوفن با نسبت کنارگذر کم طراحی و بهینه شدهاست. این موتور از یک فن محوری سه مرحلهای و یک کمپرسور محوری ده مرحلهای برای تراکم بهره میبرد. در این مطالعه، ابتدا با یک نرم افزار تجاری و بر اساس نتایج تحلیل چرخه موتور، طراحی مقدماتی قسمت تراکم موتور به انجام رسیده، سپس عملکرد طرح، با استفاده از دینامیک سیالات محاسباتی مدلسازی شدهاست. این چنین، عملکرد طرح ارائهشده توسط نرم افزار ارزیابی شده و درصد انحراف آن از مطلوب تحلیل سیکل محاسبه شدهاست. به کمک تحقیقات قبلی، سپس طرح اولیه بهینه گشته تا با کاهش انحرافات عملکردی، دبی و نسبت فشار مورد نظر به دست آید. نتایج نشان میدهد که نرمافزار تجاری قادر به تولید طرحهایی در حاشیه ۲۰ تا ۳۰ درصدی نقطه طراحی مورد نظر است. همچنین میتوان خطای طراحی را از طریق بهینهسازی به کمتر از 20 درصد کاهش داد. در طول بهینهسازی، دبی جرمیفن از 74 به 86 کیلوگرم بر ثانیه افزایش یافت، در حالی که دبی کمپرسور از 57 به 59 کیلوگرم بر ثانیه افزایش داشتهاست. نسبت فشار فن نیز از 46/2 به 54/2 و نسبت فشار کمپرسور از 24/5 به 34/6 افزایش یافتهاست. این مطالعه با بهینهسازی بر اساس یافته های قبلی، توانست راندمان فن را 7/0 درصد و راندمان کمپرسور را 5/1 درصد افزایش دهد. کاهش قدرت امواج ضربهای در محفظه فن و کمپرسور موجب چنین افزایشی شدهاست. | ||
کلیدواژهها | ||
کمپرسور محوری؛ فن محوری؛ موتور توربوفن؛ بهینهسازی آیرودینامیکی | ||
عنوان مقاله [English] | ||
Aerodynamic design and optimization of a 10 stage compressor and a 3 stage fan of a low bypass ratio turbofan engine | ||
نویسندگان [English] | ||
Mostafa Mahmoodi1؛ Jamasb Pirkandi2؛ Mehdi Jahromi,3 | ||
1Associate Professor, Malek Ashtar University of Technology, Tehran, Iran | ||
2Associate Professor, Malek Ashtar University of Technology, Tehran, Iran | ||
3Assistant Professor, Malek Ashtar University of Technology, Tehran, Iran | ||
چکیده [English] | ||
This research focuses on the design and optimization of the compression section of a low bypass ratio turbofan engine. The engine employs a three-stage axial fan and a ten-stage axial compressor for compression. Initially, a commercial software was used to conduct a preliminary design of the engine’s compression section based on engine cycle analysis results. The design’s performance was then modeled using computational fluid dynamics. This allowed for the evaluation of the software’s design performance and the calculation of its deviation percentage from the desired cycle analysis. Subsequently, insights from previous studies were utilized to optimize the initial design. The goal was to achieve the desired flow rate and pressure ratio by minimizing performance deviations. The findings indicate that the commercial software can generate designs that are within 20-30% of the desired design point. Moreover, it is feasible to reduce the design error to less than 20% through optimization. During the optimization process, the fan’s flow rate increased from 74 to 86 kg/s, while the compressor’s flow rate rose from 57 to 59 kg/s. The pressure ratio of the fan also increased from 2.46 to 2.54, and the compressor’s pressure ratio rose from 5.24 to 6.34. By leveraging previous research for optimization, the study managed to enhance the fan’s efficiency by 0.7% and the compressor’s efficiency by 1.5%. This increase was attributed to the reduction in shock waves in the fan and compressor chamber. | ||
کلیدواژهها [English] | ||
axial compressor, axial fan, turbofan engine, aerodynamic optimization | ||
مراجع | ||
[1] Miller, G. R., Lewis, G. W., and Hartmann, M. J., 1961, “Shock Losses in Transonic Compressor Blade Rows,” Journal of Engineering for Power, 83(3), pp. 235–241. [2] Chen, G. T., Greitzer’, E. M., Tan’, C. S., and Marble, F. E., 1990, I Nt AMtHICAN SOCIETY OF MECHANICAL ENGINEERS Similarity Analysis of Compressor Tip Clearance Flow Structure. [3] Konig, W. M., Hennecke, D. K., and Fottner, L., 1996, Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part II-A Model for Supersonic Flow. [4] Freeman, C., Rolls, N. A. C., and Plc, R., 1989, A Method for the Prediction of Supersonic Compressor Blade Performance. [5] Ning, F., and Xu, L., 2001, “Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model,” Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery, American Society of Mechanical Engineers. [6] Strazisar, A. J., 1984, Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry. [7] R. Taghavi-Zenouz, S. A. and A. R. P., “Aerodynamic Design of Fan and Compressor Assembly for Turbofan Engines of Arbitrary By-Pass Ratio, Based on Streamline Curvature Method-,” pp. 47–58. [8] Sohrab Hazrati Alisha 1, Hamed Aslanian 2, M. B., “Design of a Single-Stage Axial Passage Compressor with the Help of Software.” [9] Sieverding, F., Ribi, B., Casey, M., and Meyer, M., 2004, “Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance,” J Turbomach, 126(2), pp. 323–331. [10] Iyengar, V., and Sankar, L. N., 2012, “Comprehensive Application of a First Principles Based Methodology for Design of Axial Compressor Configurations,” J Turbomach, 134(6), pp. 1–9. [11] Lei, F., and Zhang, C., 2021, “Applied Sciences Preliminary Optimization of Multi-Stage Axial-Flow Industrial Process Compressors Using Aero-Engine Compressor Design Strategy.” [12] Sjögren, O., Grönstedt, T., Lundbladh, A., and Xisto, C., 2023, “Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans,” International Journal of Turbomachinery, Propulsion and Power, 8(4), p. 53. [13] Sun, Y., Ren, Y.-X., and Fu, S., 2008, THE UNSTEADY LOSS IN ONE-STAGE TRANSONIC COMPRESSOR UNDER PEAK EFFICIENCY AND NEAR STALL CONDITIONS. [14] Wadia, A. R., and Law, C. H., 1993, Low Aspect Ratio Transonic Rotors: Part 2-Influence of Location of Maximum Thickness on Transonic Compressor Performance. [15] Altafi, D., Mojaddam, M., and Bastankhah, M., 2023, “Entropy Generation Rate Analysis of Turbocharger Radial Flow Compressor in Range from Surge to Choke,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. [16] Suder, K. L., and Celestina, M. L., 1996, Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. [17] Altafi, D., Mojaddam, M., Javadi, S., and Mohammadi, M., 2022, “Entropy Generation Analysis of a Turbocharger Centrifugal Compressor in the Range Surge to Choke,” 12th Annual International Conference on IC Engines (ICICE), Tehran. [18] Altafi, D., Mojaddam, M., and Ghadimi, B., 2022, “Investigation of the Effect of the Geometric Deviations on the Performance of a Radial Flow Compressor Employing Uncertainty Quantification (UQ) and Sensitivity Analysis,” Engine Research, 67(67), pp. 51–63. [19] Hah, C., Bergner, J., and Schiffer, H.-P., 2008, Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instability in an Axial Transonic Compressor Rotor. [20] Yamada, K., Funazaki, K., and Sasaki, H., NUMERICAL INVESTIGATION OF RELATION BETWEEN UNSTEADY BEHAVIOR OF TIP LEAKAGE VORTEX AND ROTATING DISTURBANCE IN A TRANSONIC AXIAL COMPRESSOR ROTOR. [21] Bennington, M. A., Cameron, J. D., Morris, S. C., Legault, C., Barrows, S. T., Chen, J.-P., Mcnulty, G. S., and Wadia, A. R., INVESTIGATION OF TIP-FLOW BASED STALL CRITERIA USING ROTOR CASING VISUALIZATION. [22] Hah, C., Bergner, J., and Schiffer, H.-P., 2006, Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms. [23] “Day1993.” [24] Copenhaver, W. W., and Hah, C., 1997, A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor. [25] Hah, C., Rabe, D. C., and Wadia, A. R., 2004, “Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor,” Volume 5: Turbo Expo 2004, Parts A and B, ASMEDC, pp. 545–555. [26] Mayhew, E. R., Hah, C., and Wadia, A. R., 1996, The Effect of Tip Clearance on a Swept Transonic Compressor Rotor. [27] Burguburu, S., Toussaint, C., Bonhomme, C., and Leroy, G., 2004, “Numerical Optimization of Turbomachinery Bladings,” J Turbomach, 126(1), pp. 91–100. [28] Hah, C., Puterbaugh Wright-Patterson AFB, S. L., and R Wadia, O. A., CONTROL OF SHOCK STRUCTURE AND SECONDARY FLOW FIELD INSIDE TRANSONIC COMPRESSOR ROTORS THROUGH AERODYNAMIC SWEEP. [29] Denton, J. D., 2002, THE EFFECTS OF LEAN AND SWEEP ON TRANSONIC FAN PERFORMANCE: A COMPUTATIONAL STUDY. [30] Wadia, A. R., and Copenhaver, W. W., 1996, An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance. [31] Chen, N., Zhang, H., Xu, Y., and Huang, W., 2007, “Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor,” Journal of Thermal Science, 16(2), pp. 105–114. [32] Wang, D. X., He, L., Li, Y. S., and Wells, R. G., 2010, “Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines-Part II: Validation and Application,” J Turbomach, 132(2). [33] SAEED FAROKHI, P., 2014, Aircraft Propulsion, John Wiley & Sons Ltd, New Delhi, India. [34] Muchowski, R., and Gubernat, S., 2021, “Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation,” Advances in Science and Technology Research Journal, 15(3), pp. 243–253. [35] H K Versteeg and W Malalasekera, 2005, An Introduction to Computational Fluid Dynamics. [36] Romanova, D., Ivanov, O., Trifonov, V., Ginzburg, N., Korovina, D., Ginzburg, B., Koltunov, N., Eglit, M., and Strijhak, S., 2022, “Calibration of the K-ω SST Turbulence Model for Free Surface Flows on Mountain Slopes Using an Experiment,” Fluids, 7(3), p. 111. [37] Könözsy, L., 2019, “The K- $$\omega $$ ω Shear-Stress Transport (SST) Turbulence Model,” Fluid Mechanics and Its Applications, Springer Netherlands, pp. 57–66. [38] René Van den Braembussche, 2019, Design and Analysis of Centrifugal Compressors, co-publication between ASME Press and JohnWiley & Sons Ltd. | ||
آمار تعداد مشاهده مقاله: 157 |